AI Article Synopsis

  • Silicosis is an occupational lung disease causing lung fibrosis and poses a significant risk to workers due to a lack of effective treatments.
  • Researchers developed in vitro and in vivo models of silicosis, utilizing scRNA-sequencing to analyze lung tissue and discovered that silica nanoparticles (SiNPs) induce macrophage pyroptosis, leading to a shift in fibroblasts toward myofibroblasts.
  • The study reveals how exosomes from pyroptotic macrophages influence pro-fibrotic signaling, suggesting that SiNP exposure exacerbates lung fibrosis and highlighting potential new therapeutic targets for silicosis.

Article Abstract

Silicosis is an occupational lung disease characterized by progressive pulmonary fibrosis, threatening millions of occupational workers worldwide due to a lack of effective treatments. To unveil mechanisms underlying silica-induced pulmonary fibrosis, we established in vitro and in vivo silicosis models, then employed scRNA-sequencing to profile the cellular landscape of lung tissues followed by characterization of macrophage pyroptosis and exosome therefrom in driving fibroblast-to-myofibroblast-transdifferentiation. Using hyperspectral imaging and artificial intelligence-powered pathological recognition, we found that silica nanoparticle (SiNP) triggered progressive lung fibrosis in vivo, and scRNA-seq implicated interstitial macrophage as pivotal regulators for fibroblast transdifferentiation. Mechanistically, SiNPs were demonstrated to induce macrophage pyroptosis and liberate exosomes, which upregulated pro-fibrotic markers and promoted myofibroblast transition. Subsequent high-throughput miR-sequencing revealed distinct exosomal miRNA signatures that modulated TGF-β signaling and induced fibroblast transdifferentiation. Lastly, we administered these exosomes into silicotic mice and found exacerbated inflammatory infiltration and pulmonary fibrosis. In conclusion, SiNPs exposure caused the remodeling of exosomal miRNAs by inducing interstitial macrophage pyroptosis, and exosomes derived from pyroptotic macrophage fuel fibroblast transdifferentiation by creating a pro-fibrotic microenvironment and promoting silicotic fibrosis. These findings provide critical insights into the pathogenesis of silicosis and the formulation of emerging therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136629DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
16
macrophage pyroptosis
12
fibroblast transdifferentiation
12
exosomal mirna
8
pyroptotic macrophage
8
interstitial macrophage
8
macrophage
6
fibrosis
6
mirna reprogramming
4
reprogramming pyroptotic
4

Similar Publications

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment.

J Cyst Fibros

January 2025

Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Introduction: Ca2+ signaling in fibroblasts would be one of the important mediators of lung fibrosis. This study investigated the relationship between calcium channel blocker usage and the risk of developing interstitial lung disease and idiopathic pulmonary fibrosis.

Material And Methods: This cohort study used data from the Korean National Health Screening Cohort spanned from January 1, 2004, to December 31, 2015.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.

View Article and Find Full Text PDF

EVALUATION OF THE EFFECTS OF FAVIPIRAVIR (T-705) ON THE LUNG TISSUE OF HEALTY RATS: AN EXPERIMENTAL STUDY.

Food Chem Toxicol

January 2025

Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039 Kayseri, Turkey. Electronic address:

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor widely used during the COVID-19 pandemic, effectively reduces viral load but has been linked to inflammatory changes in tissues such as the liver and kidneys. High-dose and prolonged use of favipiravir for COVID-19 raises concerns about its potential toxic effects on the lungs, particularly in patients with pre-existing pulmonary conditions. This study investigated favipiravir's effects on lung tissue in healthy rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!