A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorescence sensor based on Methionine-Modified silver nanoparticles located on Fe-BTC metal-organic framework (Meth-AgNPs@Fe-BTC) for trace detection of fenitrothion pesticide in aqueous samples. | LitMetric

Fluorescence sensor based on Methionine-Modified silver nanoparticles located on Fe-BTC metal-organic framework (Meth-AgNPs@Fe-BTC) for trace detection of fenitrothion pesticide in aqueous samples.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran.

Published: March 2025

This research introduces a new "turn-on mode" fluorescence sensor for the detection of fenitrothion (FNT) pesticide in various samples. The sensor is constructed using a porous metal-organic framework (Fe-BTC) as a template to locate silver nanoparticles (AgNPs) and methionine amino acid (Meth). Methionine acts as a bridge, facilitating the interaction between FNT and AgNPs, which subsequently results in the release of AgNPs from the composite structure. The physicochemical properties of the synthesized Meth-AgNPs@Fe-BTC composite were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDAX), Transmission electron microscopy (TEM), and elemental mapping (MAP) analysis. The sensing system is based on tracking the fluorescence of the synthetic composite in such a way that the intensity of the fluorescence of the composite increases in the presence of different concentrations of fenitrothion (FNT). The effective parameters on the sensor signal, including composite dosage, pH, sonication and reaction time were investigated and optimized. The calibration graph, under optimal conditions, exhibited linearity in the concentration range of 2-95 nM for FNT, with a limit of detection of 1.9 nM. The suggested sensor was successfully validated by analyzing FNT in several real water samples and fruit juices. This research presents a significant technical achievement in the development of a fluorescence sensor for the detection of FNT, offering a sensitive and reliable method for environmental monitoring and public health preservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.125424DOI Listing

Publication Analysis

Top Keywords

fluorescence sensor
12
silver nanoparticles
8
metal-organic framework
8
detection fenitrothion
8
sensor detection
8
fenitrothion fnt
8
electron microscopy
8
fnt
6
fluorescence
5
sensor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!