A universal calibration framework for mixed-reality assisted surgery.

Comput Methods Programs Biomed

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal QC H3G 1A4, Canada. Electronic address:

Published: February 2025

Background: Mixed-reality-assisted surgery has become increasingly prominent, offering real-time 3D visualization of target anatomy such as tumors. These systems facilitate translating preoperative 3D surgical plans to the patient's body intraoperatively and allow for interactive modifications based on the patient's real-time conditions. However, achieving sub-millimetre accuracy in mixed-reality (MR) visualization and interaction is crucial to mitigate device-related risks and enhance surgical precision.

Objective: Given the critical role of camera calibration in hologram-to-patient anatomy registration, this study aims to develop a new device-agnostic and robust calibration method capable of achieving sub-millimetre accuracy, addressing the prevalent uncertainties associated with MR camera-to-world calibration.

Methods: We utilized the precision of surgical navigation systems (NAV) to address the hand-eye calibration problem, thereby localizing the MR camera within a navigated surgical scene. The proposed calibration method was integrated into a representative surgery system and subjected to rigorous testing across various 2D and 3D camera trajectories that simulate surgeon head movements.

Results: The calibration method demonstrated positional errors as low as 0.2 mm in spatial trajectories, with a standard error also at 0.2 mm, underscoring its robustness against camera motion. This accuracy complies with the accuracy and stability requirements essential for surgical applications.

Conclusion: The proposed fiducial-based hand-eye calibration method effectively incorporates the accuracy and reliability of surgical navigation systems into MR camera systems used in intraoperative applications. This integration facilitates high precision in surgical navigation, proving critical for enhancing surgical outcomes in mixed-reality-assisted procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108470DOI Listing

Publication Analysis

Top Keywords

calibration method
16
surgical navigation
12
surgical
8
achieving sub-millimetre
8
sub-millimetre accuracy
8
precision surgical
8
navigation systems
8
hand-eye calibration
8
calibration
6
accuracy
5

Similar Publications

To develop and validate a nomogram for predicting the risk of adverse events (intraoperative massive haemorrhage or retained products of conception) associated with the termination of Caesarean scar pregnancy (CSP). Data were retrospectively collected from patients diagnosed with CSP who underwent Dilation and Curettage (D&C) at two hospitals. This data was divided into internal and external cohorts for analysis.

View Article and Find Full Text PDF

Abundance estimates inform ungulate management and recovery efforts. Yet effective and affordable estimation techniques remain absent for most ungulates lacking identifiable marks and inhabiting rugged or highly vegetated terrain. Methods using N-mixture models with camera trap imagery form an appealing solution but remain unvalidated.

View Article and Find Full Text PDF

This study aimed to investigate the correlation between baseline MRI features and baseline carcinoembryonic antigen (CEA) expression status in rectal cancer patients. A training cohort of 168 rectal cancer patients from Center 1 and an external validation cohort of 75 rectal cancer patients from Center 2 were collected. A nomogram was constructed based on the training cohort and validated using the external validation cohort to predict high baseline CEA expression in rectal cancer patients.

View Article and Find Full Text PDF

This study aimed to develop and validate a predictive model for failure to collect oocytes in the Patient-Oriented Strategies Encompassing Individualized Oocyte Number (POSEIDON) Groups 3 and 4 during their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle. A retrospective analysis was conducted on patients in POSEIDON Groups 3 and 4 who underwent their first IVF/ICSI cycle at our center from January 2016 to December 2023. A total of 2,373 patients were randomly assigned to the training or validation cohort at a ratio of 6:4.

View Article and Find Full Text PDF

Reduced bacteria concentrations in wastewater is a key indicator of the efficacy of water resource recovery facilities (WRRFs). However, monitoring the presence of bacterial concentrations in real time at each stage of the WRRF is challenging as it requires taking and processing water samples offline. Although few studies have been proposed to predict bacterial concentrations using data-driven models, generalizing these models to unseen data from different WRRFs remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!