Overcoming the intrinsic low activity of most photoinduced oxidase mimics has been extremely challenging. In this work, we developed a methyl viologen (MV) mediated strategy to enhance the oxidase-like activity of fluorescein. The presence of MV gives it a high affinity for TMB with a low Michaelis-Menten constant (K) of 0.053 mM, which is about 2.8 times lower than that of fluorescein and with a remarkable catalytic constant (K) as 0.2490 s, which is 3 times as high as that of fluorescein. Fluorescein diacetate (FDA) without oxidase-like activity can be hydrolyzed in situ to produce fluorescein in the presence of carboxylesterases (CaE). Based on the inhibition of CaE activity by organophosphorus pesticides (OP), a novel colorimetric signal biosensor was established with a wide linear range from 1.0 to 200 ng/mL. This work not only provides a convenient and feasible strategy for enhancing the activity of photoinduced oxidase mimics but also blazes a new pathway for the sensitive detection of OP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142164DOI Listing

Publication Analysis

Top Keywords

oxidase-like activity
12
activity fluorescein
8
methyl viologen
8
activity photoinduced
8
photoinduced oxidase
8
oxidase mimics
8
fluorescein presence
8
activity
6
fluorescein
6
enhancing photo-induced
4

Similar Publications

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

Au-Functionalized Metal-Organic Framework Coordinated Nanotherapeutics for Substrate Self-Supplied Parallel Catalytic and Calcium-Overload-Mediated Therapy of Cancer.

ACS Appl Bio Mater

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China.

The multiple enzymatic properties of the Au-modified metal-organic framework (Au-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO NPs) were used to construct a nanozyme (Au-MOF/CaO/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer.

View Article and Find Full Text PDF

Development of a Silver-Based MOF Oxidase-Like nanozyme modified with molecularly imprinted polymer for sensitive and selective colorimetric detection of quercetin.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146., Mohammedia, Morocco. Electronic address:

Antioxidants are vital components in various food, plant, and pharmacological products, making their quantitative, selective, and straightforward assessment essential for evaluating product quality and health benefits. Nanozymes, such as metal-organic frameworks (MOFs) with enzyme-like catalytic activity, hold significant potential for developing highly efficient antioxidant sensing platforms. This is due to their large specific surface area, low density, high porosity, structural diversity, and adjustable pore size.

View Article and Find Full Text PDF

Probing the Active Nitrogen Species in Nitrogen-Doped Carbon Nanozymes for Enhanced Oxidase-Like Activity.

Small

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method.

View Article and Find Full Text PDF

Single-atom nanozyme-based catalytic ROS clearance for efficiently alleviating eczema.

J Mater Chem B

January 2025

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Single-atom nanozymes (SAzymes) with excellent biological catalytic activity have emerged as promising candidates for advancing biomedical applications. Herein, we synthesized a RuN-SAzyme by thermal decomposition. In experiments, the RuN-SAzyme demonstrated exceptional catalytic efficiency in mimicking the activity of peroxidase, with a Michaelis-Menten constant () for 3,3',5,5'-tetramethylbenzidine reaching 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!