A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phantom Safety Assessment of 3 Tesla Magnetic Resonance Imaging in Directional and Sensing Deep Brain Stimulation Devices. | LitMetric

Introduction: Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have limited such imaging. Rigorous safety testing has demonstrated that scanning outside of vendor guidelines may be both safe and feasible, unlocking unique opportunities for advanced imaging in this patient population. Currently, however, 3T MRI safety data including advanced MRI sequences in novel directional and sensing DBS devices is lacking.

Methods: An anthropomorphic phantom replicating bilateral DBS system was used to assess the temperature rise at the electrode tips, implantable pulse generator, and cranial loop during acquisition of routine clinical sequences (three dimensional [3D] T1, GRE T2*, T2 FSE) and advanced imaging sequences including functional MRI (fMRI), arterial spin labelling (ASL), and diffusion weighted imaging (DWI). Measures of radiofrequency exposure (specific absorption rate [SAR] and root-mean square value of the MRI effective component of the radiofrequency transmission field [B1+rms]) were also recorded as an indirect measure of heating. Testing involved both a new directional and sensing DBS device (Medtronic: B30015 leads and Percept PC neurostimulator) and a previous-generation DBS device (Medtronic: 3,387 leads and Percept PC neurostimulator) in combination with a state-of-the-art (Siemens MAGNETOM Prisma) and a previous-generation (GE Signa HDxt) 3T MRI scanner.

Results: On the state-of-the-art 3T MRI scanner, the new DBS device produced safe temperature rises with clinically used sequences and fMRI but not with other advanced sequences such as DWI and ASL, which also exceeded B1+rms vendor guidelines (i.e., ≤2 μT). When scanned on the previous MRI scanner, the recent DBS device produced overall lower and slower temperature rises compared to the previous DBS model. Among the sequences performed on this scanner, several (3D T1, DWI, T2 FSE, and ASL) exceeded the approved SAR vendor limit (<1 W/kg), but only ASL resulted in an unacceptable temperature rise during scanning of the previous DBS model.

Conclusion: These phantom safety data show that both clinically used MRI sequences and research sequences such as fMRI can be successfully acquired on 3T MRI scanners with a novel directional and sensing DBS model. As several of these sequences were obtained outside regulatory-approved vendor guidelines, preemptive safety testing should be done. As directional leads become increasingly common, improving MRI safety knowledge is crucial to expand clinical and research possibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000542725DOI Listing

Publication Analysis

Top Keywords

dbs device
16
directional sensing
12
magnetic resonance
8
resonance imaging
8
deep brain
8
brain stimulation
8
mri
8
dbs
8
dbs devices
8
vendor guidelines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!