This paper introduces and analyzes a theory for a paraxial design of a hybrid catadioptric optical system with variable focal length, which uses focus tunable optical components. Compared to the conventional zoom lens system, the proposed hybrid optical system can be designed with a smaller length and weight than a lens system of similar characteristics. The hybrid system does not need the movement of individual elements for zooming. All necessary relations for the calculation of the paraxial parameters and the third-order spherical aberration of the hybrid optical system are derived. The presented theory helps to find out the optical power distribution of individual optical elements of the whole hybrid zoom system considering the requirement on the spherical aberration of the system. In addition, the procedure for the calculation of basic design parameters of such an optical system is shown by examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.542110 | DOI Listing |
PLoS One
December 2024
Group of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, Valladolid, Spain.
This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.
View Article and Find Full Text PDFChem Rev
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.
View Article and Find Full Text PDFSports (Basel)
December 2024
Faculty of Kinesiology, University of Split, 21000 Split, Croatia.
The aim of this study was to examine the differences in match running performance (MRP) according to the ambient temperature during UEFA Champions League (UCL) matches. Data were collected using an optical tracking system from all teams ( = 32) in all UCL matches ( = 125) during the 2022/23 season, and classified according to the ambient temperature at which matches were played: <5 °C, 6-10 °C, 11-20 °C, and >21 °C. The results revealed the following: (i) less total distance was covered in matches played at ≥21 °C compared to the matches played at 6-10 °C (d = 0.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea.
To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!