Research on state machine control optimization of double-stack fuel cell/super capacitor hybrid system.

PLoS One

Dalian Naval Academy, Zhongshan District, Dalian City, Liaoning Province, China.

Published: November 2024

To ensure the continuous high-efficiency operation of fuel cell systems, it is essential to perform real-time estimation of the maximum efficiency point and maximum power point for multi-stack fuel cell systems. The region between these two power points is commonly referred to as the "high-efficiency operating region." Initially, a transformation of the general expression for hydrogen consumption in multi-stack fuel cell systems is conducted to obtain an algebraic expression for the efficiency curve of multi-stack fuel cells. Utilizing a polynomial differentiation approach, the parameter equation for the maximum system efficiency is computed. Subsequently, a reverse deduction is carried out using the maximum efficiency and its corresponding power of underperforming subsystems to enhance the maximum efficiency of multi-stack fuel cell systems.Furthermore, an equivalent hydrogen consumption minimization method is introduced for real-time optimization of hybrid energy systems. The state machine control method serves as an auxiliary strategy, imposing the high-efficiency operating region as a boundary constraint for the equivalent hydrogen consumption minimization strategy's results. This ensures that the multi-stack fuel cell system operates as much as possible within the high-efficiency operating region.Through simulation validation using MATLAB/Simulink, the proposed approach comprehensively leverages the advantages of the state machine and equivalent hydrogen consumption. This approach enables effective identification of the high-efficiency operating region of fuel cells, while concurrently enhancing the operational range efficiency of the system, reducing hydrogen consumption, and elevating system stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602043PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305332PLOS

Publication Analysis

Top Keywords

fuel cell
20
multi-stack fuel
20
hydrogen consumption
20
state machine
12
cell systems
12
maximum efficiency
12
equivalent hydrogen
12
high-efficiency operating
12
machine control
8
fuel
8

Similar Publications

This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.

View Article and Find Full Text PDF

Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!