A new propulsion mechanism for nano- and microrocket engines is hypothesized. It is based on the instantaneous expulsion from hydrophobic nanopores triggered by irradiation from electromagnetic microwaves, ultrasound, or sudden pressure release. A large energy output is needed for the propulsion of a nanoparticle, and the value can be determined experimentally and by means of atomistic simulations. As such, we measured the heat of intrusion of water into ITQ-29 (LTA) pure silica zeolite with cage structure of pores. The heat effect is exothermic and equal to -7.3 ± 0.8 J/g of zeolite. Similar values were reported for chabazite, ZIF-8, and grafted mesoporous silica EVA. All these materials have cage structures of pores. In contrast, silicalite-1 (MFI) zeolite with a channel structure of pores exhibits endothermic intrusion. Molecular dynamics simulations of pure silica zeolites with LTA, CHA, and MFI topologies at a broad range of water loadings show that water becomes thermodynamically stable in cage-shaped pores while it is unstable in channel-shaped pores. A large energy release is expected during water expulsion from channel-type pores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648077 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c02581 | DOI Listing |
ACS Synth Biol
January 2025
Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway.
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFChempluschem
January 2025
Dmitry Mendeleev University of Chemical Technology of Russia, EMCPS Department, Miusskaya sq.9, 125047, Moscow, RUSSIAN FEDERATION.
Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
With the rapid development of electroless nickel (Ni) plating industry, a large amount of Ni complex wastewater is inevitably produced, which is a serious threat to the ecological environment. Herein, a novel Mn-N codoped active carbon (Mn-N@AC) catalyst with high catalytic ozonation ability was synthesized by the impregnation precipitation method and was characterized by BET, XRD, Raman, SEM, FTIR, and TPR. Meanwhile, Mn-N@AC showed excellent catalytic ozonation ability, stability, and applicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!