Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work examines a field theory for directed homopolymers in a good solvent. The field theory is based on a lattice model for single- and double-strand polymers with length variables, direction-dependent pairing energy and interactions. As for the less explicit O(n)-symmetric model, there is a close relation to the conventional one-component branched polymer and the associated Lee-Yang problem. We derive results in the limiting cases of nearly complete denaturation and nearly complete renaturation. The single-strand critical exponent is calculated in two-loop order. A plausible physical realization is RNA molecules with a periodic base sequence like AUAU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/s10189-024-00461-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!