Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endoplasmic reticulum plays a central role in protein folding and cellular detoxification. NEDD4, a HECT E3 ubiquitin ligase, has been implicated in endoplasmic reticulum stress in humans. In this study, we have explored the role of S. pombe Bsd1, an ortholog of mammalian Ndfip1 (NEDD4 interacting protein 1) in tunicamycin-induced stress response pathway.
Methods And Results: Bsd1, an ortholog of mammalian NEDD4 interacting protein 1 (Ndfip1) plays a protective role against tunicamycin-induced ER stress. The confocal microscopy using GFP tagged Bsd1 revealed its localization to the membrane, with a more pronounced signal in the presence of tunicamycin. Additionally, the expression analysis showed a two-fold increase in the expression of Bsd1 after 4 h exposure to tunicamycin. Furthermore, acridine orange/ ethidium bromide staining and MTT assay revealed an increase in apoptotic cell death in bsd1Δ as compared to wild type cells after treatment with ER stressors. Compared to the wild type, we observed punctate FM4-64 staining in bsd1Δ cells in the presence of tunicamycin suggesting a significant loss of vacuolar structures. In a genetic interaction analysis, we observed enhanced sensitivity of tunicamycin in bsd1Δ ire1Δ double mutant as compared to each single mutant, suggesting the role of Bsd1 in the tunicamycin-induced ER stress response might be independent of the Ire1 pathway.
Conclusion: Our study has implicated the role of fission yeast Bsd1 in ER stress response in an Ire1 independent pathway. Further, we have shown its role in apoptotic cell death and the maintenance of vacuolar structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-10121-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!