Immunosuppression in malignant glioma remains a barrier to therapeutic development. CD83 overexpression in human and mouse glioma increases survival. CD83+ tumor cells promote signatures related to cytotoxic T cells, enhanced activation of CD8+ T cells, and increased proinflammatory cytokines. These findings suggest that tumor-expressed CD83 could mediate tumor-immune communications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683667 | PMC |
http://dx.doi.org/10.1158/2767-9764.CRC-24-0281 | DOI Listing |
Medicine (Baltimore)
January 2025
Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China.
T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFClin Nucl Med
January 2025
Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London, United Kingdom.
A 57-year-old man with a 3-month history of lower abdominal pain and rectal bleeding with black stools underwent urgent abdominal CT, which revealed an ovoid hyperdense lesion in the ileum in the right iliac fossa. The prime differential was a midgut neuroendocrine tumor. Thus, the patient was referred for a 68Ga-DOTATATE PET/CT scan, which demonstrated intense activity in this lesion with no evidence of somatostatin receptor expression elsewhere.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.
Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!