Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of efficient and stable photoelectrodes is essential for the advancement of photoelectrochemical (PEC) water-splitting technologies, which hold promise for efficient oxygen evolution reaction (OER), necessary for sustainable hydrogen production. In this study, the synthesis of a ternary composite, In S /FeVO /CNT has been reported, designed for highly efficient PEC oxygen evolution. The formation of In S /FeVO heterostructure enhances PEC performance significantly due to the type-II band alignment, which minimizes electron-hole recombination and improves charge separation. The addition of CNTs further enhances performance by providing conductive pathways that improve electron transport and reduce charge transfer resistance. The resulting In S /FeVO /CNT ternary composite achieves a current density of 14.70 mAcm at 1.8 V vs. RHE, representing a notable increase in performance. Electrochemical impedance spectroscopy (EIS) shows that the ternary composite has the lowest charge transfer resistance, while Bode phase analysis indicates a longer carrier lifetime, emphasizing the synergistic effect of heterostructure formation and CNT inclusion. The ternary composite also demonstrates excellent stability and responsiveness during transient photocurrent cycling, maintaining performance under repeated chronoamperometric ON/OFF cycles, making it a strong candidate for water-splitting applications driven by visible light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!