Glycyrrhizic acid (GLA) is the most important bioactive constituent of licorize root and exhibits antiviral, antimicrobial, anti-oxidant, anti-inflammatory, anti-allergic, and antitumor activities. GLA has an amphiphilic nature consisting of two hydrophilic and one hydrophobic part, and its mechanism of action could be mediated by its incorporation into the membrane. Furthermore, GLA presents two different forms, protonated (GLA) and deprotonated (GLAD), and has been suggested that their location inside the membrane could be different. Since GLA could be a source against many types of diseases, we have localized the GLA molecule in the presence of a complex membrane and established the detailed interactions of GLA with lipids using all-atom molecular dynamics. Our outcomes sustain that GLA/GLAD tend to locate amid the CHOL oxygen atom and the phospholipid phosphates, preferably perpendicular to the membrane surface, increasing membrane fluidity. Interestingly, GLA and GLAD tend to be surrounded by specific phospholipids, different for each type of molecule. Outstandingly, both GLA and GLAD tend to spontaneously associate in solution forming aggregates, precluding them from inserting into the membrane and, therefore, interacting with it. Consequently, some of the biological properties of GLA/GLAD could be credited to the alteration of the membrane biophysical properties by interacting with specific lipids. However, the formation of an aggregate in solution could hinder its bioactive properties and should be considered a suited vehicle when prepared to be used in biological or clinical assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2024.2434037 | DOI Listing |
Animal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
CMAJ
January 2025
Schools of Health and Wellbeing (Nakada, Pell, Ho), and Cardiovascular and Metabolic Health (Welsh, Celis-Morales), University of Glasgow, Glasgow, UK; Human Performance Laboratory, Education, Physical Activity and Health Research Unit (Celis-Morales), Universidad Católica del Maule, Talca, Chile; Centro de Investigación en Medicina de Altura (CEIMA) (Celis-Morales), Universidad Arturo Prat, Iquique, Chile.
Background: Anxiety and depression are associated with cardiovascular disease (CVD). We aimed to investigate whether adding measures of anxiety and depression to the American Heart Association Predicting Risk of Cardiovascular Disease Events (PREVENT) predictors improves the prediction of CVD risk.
Methods: We developed and internally validated risk prediction models using 60% and 40% of the cohort data from the UK Biobank, respectively.
Eur J Radiol Open
June 2025
Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Düsseldorf 40225, Germany.
Objective: [F]FDG imaging is an integral part of patient management in CAR-T-cell therapy for recurrent or therapy-refractory DLBCL. The calculation methods of predictive power of specific imaging parameters still remains elusive. With this retrospective study, we sought to evaluate the predictive power of the baseline metabolic parameters and tumor burden calculated with automated segmentation via different thresholding methods for early therapy failure and mortality risk in DLBCL patients.
View Article and Find Full Text PDFChem Sci
January 2025
Instituto de Química, Universidad de Antioquia Calle 70 No. 52-21 Medellín 050010 Colombia
We present a computational investigation into the fragmentation pathways of ethanolamine (CHNO, EtA), propanol (CHO, PrO), butanenitrile (CHN, BuN), and glycolamide (CHNO, GlA)-saturated organic molecules detected in the interstellar medium (ISM), particularly in the molecular cloud complex Sagittarius B2 (Sgr B2) and its molecular cloud G+0.693-0.027.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!