Sensitive detection of gallic acid (GA) in foods is of great significance for assessing the antioxidant properties of products and ensuring consumer health. In this work, a simple electrochemical sensor was conveniently fabricated by integrating vertically-ordered mesoporous silica film (VMSF) with electrochemically reduced graphene oxide (ErGO) and nitrogen graphene quantum dots (NGQDs) nanocomposite, enabling sensitive detection of GA in food sample. A water-soluble mixture of graphene oxide (GO) and NGQDs was drop-cast onto the common carbon electrode, glassy carbon electrode (GCE), followed by rapid growth of VMSF using an electrochemically assisted self-assembly method (EASA). The negative voltage applied during VMSF growth facilitated the reduction of GO to ErGO. The synergistic effects of ErGO, NGQDs, and the nanochannels of VMSF led to nearly a tenfold enhancement of the GA signal compared to that obtained on electrodes modified with either ErGO or NGQDs alone. Sensitive detection of GA was realized with a linear concentration range from 0.1 to 10 μM, and from 10 to 100 μM. The limit of detection (LOD), determined based on a signal-to-noise ratio of three (/ = 3), was found to be 81 nM. Combined with the size-exclusion property of VMSF, the fabricated sensor demonstrated high selectivity, making it suitable for the sensitive electrochemical detection of gallic acid in food samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588441PMC
http://dx.doi.org/10.3389/fnut.2024.1491345DOI Listing

Publication Analysis

Top Keywords

sensitive detection
16
detection gallic
12
gallic acid
12
acid food
8
electrochemical sensor
8
fabricated integrating
8
vmsf electrochemically
8
graphene oxide
8
carbon electrode
8
ergo ngqds
8

Similar Publications

The accurate diagnosis of aging-related neurocognitive disorders as early as possible, even in a phase that is characterized by the absence of clinical symptoms, is nowadays the holy grail of the neurosciences. R4Alz-R is a novel cognitive tool designed to objectively detect the subtle cognitive changes that emerge as the very first result of the aging processes and could be developed and broadened in a continuum from healthy aging to subjective cognitive impairment (SCI) and mild cognitive impairment (MCI), before reaching some type of dementia. The goal of the present study was to examine whether the R4Alz-R battery has the potential to detect these subtle changes.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

First study on the efficiency of Tc-rituximab for sentinel lymph node mapping and biopsy in oral squamous cell carcinoma.

Ann Nucl Med

December 2024

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Objective: To explore the clinical efficiency of using the sentinel lymph node (SLN) imaging agent Tc-rituximab for lymphoscintigraphy and SLN biopsy (SLNB) in oral squamous cell carcinoma (OSCC) patients.

Methods: A retrospective study was conducted on 23 patients with OSCC who underwent Tc-rituximab lymphoscintigraphy and SLNB. The cohort comprised 16 men (69.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

QuantiFERON SARS-CoV-2 assay for the evaluation of cellular immunity after immunization with mRNA SARS-CoV-2 vaccines: a systematic review and meta-analysis.

Immunol Res

December 2024

Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, Aghia Sophia" Children's Hospital, 11527, Athens, Greece.

A systematic review and meta-analysis were performed to evaluate the virus-specific T-cell response after COVID-19 mRNA vaccination, using the QuantiFERON SARS-CoV-2 interferon-γ release assay. A search was conducted (June 8, 2023) in the PUBMED, SCOPUS, and medRxiv databases, to identify studies reporting the QuantiFERON SARS-CoV-2 (Starter (two antigen tubes) or Starter + Extended Pack (three antigen tubes), cut-off ≥ 0.15 IU/mL) positivity rate (PR) in immunocompetent adults, following the administration of two or three COVID-19 mRNA vaccine doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!