Background: Recent research has highlighted pyroptosis as a key factor in cancer progression. This study aims to explore the association between pyroptosis-related signatures and overall survival (OS) in head and neck squamous cell carcinoma (HNSC) and develop a pyroptosis-related long non-coding RNA (lncRNA) risk model to predict prognosis and response to immunotherapy in HNSC.
Methods: We extracted expression data for 18 pyroptosis-related genes and identified lncRNA probes specific to HNSC by using datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Consensus clustering was performed to categorize HNSC patients into distinct subtypes. A six-lncRNA risk score model was constructed through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. We evaluated the predictive ability of the lncRNA model for patients' survival and immunotherapy response. Gene expression was evaluated using immunohistochemistry (IHC) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR).
Results: Our analysis revealed two distinct pyroptosis-related subtypes in HNSC patients, Cluster A and Cluster B. Notably, patients in Cluster B exhibited significantly poorer overall survival compared to those in Cluster A. Through differential expression analysis, we identified six lncRNAs (AC002331.1, CTA-384D8.35, RP11-291B21.2, AC006262.5, RP1-27K12.2, and RP11-54H7.4) that were differentially expressed between these clusters. A 6-lncRNA risk score model was developed, which successfully stratified patients into high- and low-risk groups with distinct overall survival outcomes. Validation using RT-qPCR confirmed the differential expression of these six lncRNAs in HNSC tumor tissues compared to adjacent normal tissues, we found that the expression of CTA-384D8.35 was significantly increased in the tumor group (t=-6.203, P<0.001). Furthermore, the 6-lncRNA risk score model demonstrated a significant association with patient response to immunotherapy, with the low-risk group exhibiting a higher objective response rate to immune checkpoint blockade (ICB) therapy and longer survival compared to the high-risk group.
Conclusion: Our study underscores the role of pyroptosis signatures in HNSC prognosis and identifies two distinct pyroptosis subtypes with differing survival outcomes. The six-lncRNA risk score model offers a valuable tool for predicting patient prognosis and potential benefits from ICB therapy. These findings highlight the importance of pyroptosis and associated lncRNAs in the tumor microenvironment, paving the way for novel targeted therapies in HNSC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588584 | PMC |
http://dx.doi.org/10.3389/fonc.2024.1478895 | DOI Listing |
Sci Rep
December 2024
Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis.
View Article and Find Full Text PDFGene
December 2024
Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Department of Clinical Laboratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China. Electronic address:
Pre-existing of pulmonary tuberculosis (PTB) poses increased lung cancer risk, yet the molecular mechanisms remain inadequately understood. This study sought to elucidate the potential mechanisms by performing comprehensive analyses of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from patients with PTB, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). Microarray assays were employed to analyze the DEGs in PBMCs of these patients.
View Article and Find Full Text PDFBackground: Osteosarcoma (OS) is the most common primary bone malignancy in the world. Increasing studies indicate that long non-coding RNAs (lncRNAs) are involved in ferroptosis and OS progression. Therefore, this study aims to identify ferroptosis- related lncRNAs (frlncRNAs), explore potential competing endogenous RNA (ceRNA) networks, and establish a new model for predicting OS prognosis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China.
Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus. VEGF plays a pivotal role in the pathogenesis of DR. To characterize the VEGF-related genes in DR patients, the RNAseq dataset of DR and normal control were downloaded from the GEO database and analyzed using R package limma.
View Article and Find Full Text PDFCancer Rep (Hoboken)
December 2024
Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
Background: Numerous studies have demonstrated the significance of long noncoding RNA (lncRNA) in the development of cancer metastasis. The expression levels of many lncRNAs are elevated in metastatic lung cancer patients compared to non-metastatic lung cancer patients.
Objectives: The primary objective of the study was to investigate the association between the expression levels of three lncRNAs (MALAT1, HOTAIR, and AFAP1-AS1) and lymph node metastasis (LNM) of lung cancer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!