Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing efficient and selective oxidative transformations of light alkanes into alkenes or oxygenates is vital for advancing to cleaner and more efficient chemical processes. A suitable selective catalyst is required to ease reaction conditions and ensure the formation of desired oxygenated compounds. Here, using periodic density functional theory, we have investigated the suitability of a ruthenium catalyst for the partial oxidation of -pentane using molecular oxygen. The first step of the process involves the dehydrogenation of primary or secondary carbons in the aliphatic chain, resulting in an adsorbed hydride structure on the metal surface. The intermediate may proceed through different reaction pathways, leading to various products. The successive dehydrogenation, a faster process than the first oxidative dehydrogenation, produces pentene and a water molecule. Alternatively, the direct interaction of the hydroxyl group with the pentyl hydride produces alcohol. The atomistic simulations reveal that Ru is a suitable candidate for catalyzing the conversion of alkanes into alkenes and oxygenates. As a significant outcome, we have observed that catalytic oxidative dehydrogenation is more feasible than direct catalytic dehydrogenation for yielding olefins from alkanes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587082 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.4c05735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!