In the present work we have studied collectives of active disks with an energy depot, moving in the two-dimensional plane and interacting an excluded volume. The energy depot accounts for the extraction of energy taking place at the level of each particle in order to perform self-propulsion, included in an underdamped Langevin dynamics. We show that this model undergoes a flocking transition, exhibiting some of the key features of the Vicsek model, namely, band formation and giant number fluctuations. These bands, either single or multiple, are dense and very strongly polarised propagating structures. Large density bands disappear as the activity is further increased, eventually reaching a homogeneous polar state. We unravel an effective alignment interaction at the level of two-particle collisions that can be controlled by activity and gives rise to flocking at large scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm00785a | DOI Listing |
Biomacromolecules
January 2025
Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Small molecules are frontline therapeutics for many diseases; however, they are often limited by their poor solubility. Therefore, hydrophobic small molecules are often encapsulated or prepared as pure drug nanoparticles. Navitoclax, used to eliminate senescent cells, is one such small molecule that faces challenges in translation due to its hydrophobicity and toxic side effects.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Internal Medicine, Erasmus Medical Center (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
Consuming a "modern" Western diet and overnutrition may increase insulin secretion. Additionally, nutrition-mediated hyperinsulinemia is a major driver of ectopic fat deposition. The global prevalence of metabolic syndrome is high and growing.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.
Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.
Nat Commun
January 2025
Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes.
View Article and Find Full Text PDFPLoS One
December 2024
School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, China.
Vernacular architecture, optimized over centuries to create comfortable thermal environments using sustainable design strategies and local materials, can offer valuable insights for contemporary eco-friendly architectural design. This research investigates the sustainable design strategies of vernacular architecture in southwest Hubei, focusing on the First Granary of Xuan'en County as a representative case study. Through field investigations of indoor environments, this study explores how traditional architectural practices have addressed the region's complex mountainous terrain and hot, humid climate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!