This study explores the vapochromic and vapoluminescent behaviors of [Pt(tpy)Cl]PF host molecules (tpy = 2,2':6',2''-terpyridine) under acetonitrile (CHCN) vapor guest, challenging the conventional view that these phenomena arise solely from direct host-guest interactions. Our findings reveal a cooperative mechanism where mechanochromic surface perturbations prime the Pt(II) host for guest incorporation, leading to initial color and luminescence changes prior to significant structural alterations. While the color transition between the yellow [Pt(tpy)Cl]PF form and the red/orange [Pt(tpy)Cl]PF·CHCN form is reversible, repeated vapor cycling induces a loss of crystallinity, as indicated by diffraction peak broadening and emission shifts. Scanning electron microscopy analyses show mechanical deformations such as bending and surface pitting, emphasizing the role of vapomechanical stress in altering optical properties. These insights highlight the need for integrated design strategies in developing robust vapochromic materials for gas sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02053gDOI Listing

Publication Analysis

Top Keywords

vapomechanical stress
8
cracking vapochromic
4
vapochromic salts
4
salts unveiling
4
unveiling vapomechanical
4
stress gas-sorbing
4
gas-sorbing platinum
4
platinum complexes
4
complexes study
4
study explores
4

Similar Publications

This study explores the vapochromic and vapoluminescent behaviors of [Pt(tpy)Cl]PF host molecules (tpy = 2,2':6',2''-terpyridine) under acetonitrile (CHCN) vapor guest, challenging the conventional view that these phenomena arise solely from direct host-guest interactions. Our findings reveal a cooperative mechanism where mechanochromic surface perturbations prime the Pt(II) host for guest incorporation, leading to initial color and luminescence changes prior to significant structural alterations. While the color transition between the yellow [Pt(tpy)Cl]PF form and the red/orange [Pt(tpy)Cl]PF·CHCN form is reversible, repeated vapor cycling induces a loss of crystallinity, as indicated by diffraction peak broadening and emission shifts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!