Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nuclear pore complex (NPC) is responsible for the selective transport of biomolecules in and out of the nucleus. This selective feature is achieved through intrinsically disordered proteins, FG-Nups, that are anchored to the inner wall of the NPC. Cargo smaller than approximately 5 nm can rapidly diffuse through the NPC whereas larger cargo is increasingly slowed down. Larger cargos bound to chaperone proteins (from the karyopherin or Kap family) can still be transported due to nonspecific interactions with the FG-Nups. Although various mechanisms for the transport of Kaps have been proposed, a consensus has still to be reached. Here, we conducted a coarse-grained molecular dynamics study to shed light on Kap translocation through NPCs. We investigated the effect of Kap surface charge and hydrophobicity on the transport rate. We found that the negative charge of the Kaps is essential for transport whereas Kap hydrophobicity of the transport particle aids in the translocation. Interestingly, our results indicate that the positive net charge of the nuclear Nups (especially Nup1) is instrumental for the transport of Kaps, revealing a (previously proposed) gradient of increasing binding affinity of the Kaps with FG-Nups from the cytoplasm to the nucleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpj.2024.11.3313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!