Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP. Four tandem copies of M2e were either fused to the N-terminus of the full-length PhMV CP or replaced the 43 N-terminal amino acids of the PhMV CP. Only the first fusion protein was successfully expressed in , where it self-assembled into spherical VLPs of about 30 nm in size. The particles were efficiently recognized by anti-M2e antibodies, indicating that the M2e peptides were exposed on the surface. Subcutaneous immunization of mice with VLPs carrying four copies of M2e induced high levels of M2e-specific IgG antibodies in serum and protected animals from a lethal influenza A virus challenge. Therefore, PhMV particles carrying M2e peptides may become useful research tools for the development of recombinant influenza vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598990 | PMC |
http://dx.doi.org/10.3390/v16111802 | DOI Listing |
Viruses
November 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA.
A significant problem with current influenza vaccines is their reliance on predictions of the most prevalent strains for the upcoming season, with inaccurate forecasts greatly reducing the overall efficacy of the immunization campaign. A universal influenza vaccine, which leverages epitopes conserved across many, if not all, strains of influenza, could reduce the need for extremely accurate forecasting. The highly conserved ectodomain of the influenza M2 protein contains a B cell epitope in the M2 region, making it a promising candidate as a universal influenza vaccine.
View Article and Find Full Text PDFVaccines (Basel)
September 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to be fused to an adjuvant protein or carrier virus-like particles (VLPs) to increase immunogenicity and provide protection against infection. In this study, we obtained VLPs based on capsid proteins (CPs) of single-stranded RNA phages Beihai32 and PQ465 bearing the M2e peptides.
View Article and Find Full Text PDFViruses
July 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in plants using self-replicating vector based on the potato virus X genome.
View Article and Find Full Text PDFVirology
September 2024
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. Electronic address:
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!