AI Article Synopsis

  • - Long-term rainfall infiltration is a major cause of phase creep landslides, which can severely damage life and property; this study focused on analyzing one such landslide through geological surveys and climate assessment.
  • - A Beidou intelligent monitoring system using LoRa IoT technology was developed for remote monitoring of the reinforced slope, integrating various devices to track displacement, deformation, internal forces, and rainfall.
  • - Over two years, the system effectively stabilized the slope, providing 13 early warnings with over 90% accuracy, greatly enhancing safety measures and contributing valuable insights for monitoring high slopes in mountainous areas.

Article Abstract

Landslides cause severe damage to life and property with a wide-ranging impact. Infiltration of rainfall is one of the significant factors leading to landslides. This paper reports on a phase creep landslide caused by long-term rainfall infiltration. A detailed geological survey of the landslide was conducted, and the deformation development pattern and mechanism of the landslide were analyzed in conjunction with climatic characteristics. Furthermore, reinforcement measures specific to the landslide area were proposed. To monitor the stability of the reinforced slope, a Beidou intelligent monitoring and warning system suitable for remote mountainous areas was developed. The system utilizes LoRa Internet of Things (IoT) technology to connect various monitoring components, integrating surface displacement, deep deformation, structural internal forces, and rainfall monitoring devices into a local IoT network. A data processing unit was established on site to achieve preliminary processing and automatic handling of monitoring data. The monitoring results indicate that the reinforced slope has generally stabilized, and the improved intelligent monitoring system has been able to continuously and accurately reflect the real-time working conditions of the slope. Over the two-year monitoring period, 13 early warnings were issued, with more than 90% of the warnings accurately corresponding to actual conditions, significantly improving the accuracy of early warnings. The research findings provide valuable experience and reference for the monitoring and warning of high slopes in mountainous areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598163PMC
http://dx.doi.org/10.3390/s24227409DOI Listing

Publication Analysis

Top Keywords

monitoring
9
monitoring system
8
reinforced slope
8
intelligent monitoring
8
monitoring warning
8
mountainous areas
8
early warnings
8
landslide
5
gradual failure
4
failure rainfall-induced
4

Similar Publications

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

January 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

Background: Resection of calcified meningiomas in the ventral thoracic spinal canal remains a formidable surgical challenge despite advances in technology and refined microsurgical techniques. These tumors, which account for a small percentage of spinal meningiomas, are characterized by their hardness, complicating safe resection and often resulting in worse outcomes than their noncalcified counterparts.

Observations: The authors present the case of a 68-year-old woman with a ventrally located ossified meningioma at the T9-10 level, successfully treated via a posterolateral transpedicular approach.

View Article and Find Full Text PDF

Analysis of Reddit Discussions on Motivational Factors for Physical Activity: Cross-Sectional Study.

J Med Internet Res

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Background: Despite the ample benefits of physical activity (PA), many individuals do not meet the minimum PA recommended by health organizations. Structured questionnaires and interviews are commonly used to study why individuals perform PA and their strategies to adhere to PA. However, certain biases are inherent to these tools that limit what can be concluded from their results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!