A standard measuring gas cell used in absorption spectrometers is a cylinder enclosed by two transparent windows. The Fabry-Perot effects caused by multiple reflections of terahertz waves between these windows produce significant variations in the transmitted radiation intensity. Therefore, the Fabry-Perot effects should be taken into account to correctly measure absorption spectra in Bouguer law-based absorption spectroscopy. One approach to reducing the Fabry-Perot effects is based on inserting an additional external movable window with the standard measuring gas cell. This was proposed and numerically analyzed in our previous work. This paper is aimed at the experimental validation of this method when using amplitude modulation (AM) spectroscopy. Also, a comparison of the efficiency of reducing the Fabry-Perot effects using this method is experimentally compared to frequency modulation spectroscopy. The latter was shown to effectively reduce the Fabry-Perot effects compared to AM spectroscopy with the standard measuring gas cell, and the use of the external movable window was shown to further improve the elimination of Fabry-Perot effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598292 | PMC |
http://dx.doi.org/10.3390/s24227380 | DOI Listing |
Photoacoustics
October 2024
Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Metasurfaces have shown great potential in achieving low-cost and low-complexity signal enhancement and redirection. Due to the low transmission power and high attenuation issues of current high-frequency communication technology, it is necessary to explore signal redirection technology based on metasurfaces. This paper presents an innovative metasurface for indoor signal enhancement and redirection, featuring thin thickness, high gain, and wide-angle deflection.
View Article and Find Full Text PDFNanophotonics
April 2024
The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China.
The linear electro-optic effect offers a valuable means to control light properties via an external electric field. Lithium niobate (LN), with its high electro-optic coefficients and broad optical transparency ranges, stands out as a prominent material for efficient electro-optic modulators. The recent advent of lithium niobate-on-insulator (LNOI) wafers has sparked renewed interest in LN for compact photonic devices.
View Article and Find Full Text PDFNanophotonics
November 2024
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Structural colors, resulting from the interaction of light with nanostructured materials rather than pigments, present a promising avenue for diverse applications ranging from ink-free printing to optical anti-counterfeiting. Achieving structural colors with high purity and brightness over large areas and at low costs is beneficial for many practical applications, but still remains a challenge for current designs. Here, we introduce a novel approach to realizing large-scale structural colors in layered thin film structures that are characterized by both high brightness and purity.
View Article and Find Full Text PDFNanophotonics
June 2024
Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA.
We present a theory that explains the resonance effect of the vibrational strong coupling (VSC) modified reaction rate constant at the normal incidence of a Fabry-Pérot (FP) cavity. This analytic theory is based on a mechanistic hypothesis that cavity modes promote the transition from the ground state to the vibrational excited state of the reactant, which is the rate-limiting step of the reaction. This mechanism for a single molecule coupled to a single-mode cavity has been confirmed by numerically exact simulations in our recent work in [J.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!