Mask-Guided Spatial-Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction.

Sensors (Basel)

College of Information Science and Engineering, Ritsumeikan University, Osaka 603-8577, Japan.

Published: November 2024

Hyperspectral image (HSI) reconstruction is a critical and indispensable step in spectral compressive imaging (CASSI) systems and directly affects our ability to capture high-quality images in dynamic environments. Recent research has increasingly focused on deep unfolding frameworks for HSI reconstruction, showing notable progress. However, these approaches have to break the optimization task into two sub-problems, solving them iteratively over multiple stages, which leads to large models and high computational overheads. This study presents a simple yet effective method that passes the degradation information (sensing mask) through a deep learning network to disentangle the degradation and the latent target's representations. Specifically, we design a lightweight MLP block to capture non-local similarities and long-range dependencies across both spatial and spectral domains, and investigate an attention-based mask modelling module to achieve the spatial-spectral-adaptive degradation representationthat is fed to the MLP-based network. To enhance the information flow between MLP blocks, we introduce a multi-level fusion module and apply reconstruction heads to different MLP features for deeper supervision. Additionally, we combine the projection loss from compressive measurements with reconstruction loss to create a dual-domain loss, ensuring consistent optical detection during HS reconstruction. Experiments on benchmark HS datasets show that our method outperforms state-of-the-art approaches in terms of both reconstruction accuracy and efficiency, reducing computational and memory costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598360PMC
http://dx.doi.org/10.3390/s24227362DOI Listing

Publication Analysis

Top Keywords

hyperspectral image
8
hsi reconstruction
8
reconstruction
7
mask-guided spatial-spectral
4
mlp
4
spatial-spectral mlp
4
mlp network
4
network high-resolution
4
high-resolution hyperspectral
4
image reconstruction
4

Similar Publications

Visible and Near-infrared hyperspectral imaging (VNIR-HSI) combined with machine learning has shown its effectiveness in various detection applications. Specifically, the quality of cigar tobacco leaves undergoes subtle changes due to environmental differences during the air-curing phase. This study aims to evaluate the feasibility of deep learning methods in overcoming data limitations to develop a VNIR-HSI prediction model for the quality of cigar tobacco leaves at different air-curing levels.

View Article and Find Full Text PDF

As consumers increasingly prioritize food safety and nutritional value, the dairy industry faces a pressing need for rapid and accurate methods to detect essential nutritional components in milk, such as fat, protein, and lactose. Hyperspectral imaging (HSI) technology, known for its non-destructive, fast, and precise nature, shows great promise in food quality assessment. However, the high dimensionality of HSI data poses challenges for effective band selection and model optimization.

View Article and Find Full Text PDF

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF

The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.

View Article and Find Full Text PDF

Ultraviolet (UV) hyperspectral imaging shows significant promise for the classification and quality assessment of raw cotton, a key material in the textile industry. This study evaluates the efficacy of UV hyperspectral imaging (225-408 nm) using two different light sources: xenon arc (XBO) and deuterium lamps, in comparison to NIR hyperspectral imaging. The aim is to determine which light source provides better differentiation between cotton types in UV hyperspectral imaging, as each interacts differently with the materials, potentially affecting imaging quality and classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!