A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise. | LitMetric

Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise.

Sensors (Basel)

Department of Computer Science, University of Maryland, College Park, MD 20742, USA.

Published: November 2024

AI Article Synopsis

  • - Holographic displays are a new tech for augmented and virtual reality, offering realistic 3D visuals with improved depth perception by using fewer holographic pixels for higher efficiency.
  • - Current methods for creating images in holographic form are too slow, taking hundreds of milliseconds, which is not practical for real-time applications.
  • - This paper introduces a faster, non-iterative method using Perlin noise that improves rendering speed by over 600 times while maintaining image quality, making it suitable for interactive content in AR and VR.

Article Abstract

Holographic displays are an upcoming technology for AR and VR applications, with the ability to show 3D content with accurate depth cues, including accommodation and motion parallax. Recent research reveals that only a fraction of holographic pixels are needed to display images with high fidelity, improving energy efficiency in future holographic displays. However, the existing iterative method for computing sparse amplitude and phase layouts does not run in real time; instead, it takes hundreds of milliseconds to render an image into a sparse hologram. In this paper, we present a non-iterative amplitude and phase computation for sparse Fourier holograms that uses Perlin noise in the image-plane phase. We conduct simulated and optical experiments. Compared to the Gaussian-weighted Gerchberg-Saxton method, our method achieves a run time improvement of over 600 times while producing a nearly equal PSNR and SSIM quality. The real-time performance of our method enables the presentation of dynamic content crucial to AR and VR applications, such as video streaming and interactive visualization, on holographic displays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598788PMC
http://dx.doi.org/10.3390/s24227358DOI Listing

Publication Analysis

Top Keywords

holographic displays
12
sparse fourier
8
fourier holograms
8
holograms perlin
8
perlin noise
8
amplitude phase
8
instant-sfh non-iterative
4
sparse
4
non-iterative sparse
4
holographic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!