We utilized remote sensing and ground cover data to predict soil organic carbon (SOC) content across a vast geographic region. Employing a combination of machine learning and deep learning techniques, we developed a novel data fusion approach that integrated Digital Elevation Model (DEM) data, MODIS satellite imagery, WOSIS soil profile data, and CHELSA environmental data. This combined dataset, named GeoBlendMDWC, was specifically designed for SOC prediction. The primary aim of this research is to develop and evaluate a novel optimization algorithm for accurate SOC prediction by leveraging multi-source environmental data. Specifically, this study aims to (1) create an integrated dataset combining remote sensing and ground data for comprehensive SOC analysis, (2) develop a new optimization technique that enhances both machine learning and deep learning model performance, and (3) evaluate the algorithm's efficiency and accuracy against established optimization methods like Jaya and GridSearchCV. This study focused on India, Australia, and South Africa, countries known for their significant agricultural activities. We introduced a novel optimization technique for both machine learning and deep neural networks, comparing its performance to established methods like the Jaya optimization technique and GridSearchCV. The models evaluated included XGBoost Regression, LightGBM, Gradient Boosting Regression (GBR), Random Forest Regression, Decision Tree Regression, and a Multilayer Perceptron (MLP) model. Our research demonstrated that the proposed optimization algorithm consistently outperformed existing methods in terms of execution time and performance. It achieved results comparable to GridSearchCV, reaching an R of 90.16, which was a significant improvement over the base XGBoost model's R of 79.08. In deep learning optimization, it significantly outperformed the Jaya algorithm, achieving an R of 61.34 compared to Jaya's 30.04. Moreover, it was 20-30 times faster than GridSearchCV. Given its speed and accuracy, this algorithm can be applied to real-time data processing in remote sensing satellites. This advanced methodology will greatly benefit the agriculture and farming sectors by providing precise SOC predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598679 | PMC |
http://dx.doi.org/10.3390/s24227317 | DOI Listing |
Sci Rep
December 2024
Department of Electrical and Electronics Engineering, Engineering Faculty, Düzce University, Düzce, Turkey.
The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Vellore Institute of Technology, Chennai, 600127, India.
Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Production Engineering, KTH Royal Institute of Technology, 11428, Stockholm, Sweden.
This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, School of Science and Engineering, The American University in Cairo, AUC Avenue, 11835, New Cairo, Egypt.
This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electronic Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!