A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From Envelope Spectra to Bearing Remaining Useful Life: An Intelligent Vibration-Based Prediction Model with Quantified Uncertainty. | LitMetric

From Envelope Spectra to Bearing Remaining Useful Life: An Intelligent Vibration-Based Prediction Model with Quantified Uncertainty.

Sensors (Basel)

Dynamics Laboratory, The Department of Mechanical and Aerospace Engineering, The University of Manchester, Manchester M13 9PL, UK.

Published: November 2024

Bearings are pivotal components of rotating machines where any defects could propagate and trigger systematic failures. Once faults are detected, accurately predicting remaining useful life (RUL) is essential for optimizing predictive maintenance. Although data-driven methods demonstrate promising performance in direct RUL prediction, their robustness and practicability need further improvement regarding physical interpretation and uncertainty quantification. This work leverages variational neural networks to model bearing degradation behind envelope spectra. A convolutional variational autoencoder for regression (CVAER) is developed to probabilistically predict RUL distributions with confidence measures. Enhanced average envelope spectra (AES) are used as network input for its physical robustness in bearing condition assessment and fault detection. The use of the envelope spectrum ensures that it contains only bearing-related information by removing other rotor-related frequencies, hence it improves the RUL prediction. Unlike traditional variational autoencoders, the probabilistic regressor and latent generator are formulated to quantify uncertainty in RUL estimates and learn meaningful latent representations conditioned on specific RUL. Experimental validations are conducted on vibration data collected using multiple accelerometers whose natural frequencies cover bearing resonance ranges to ensure fault detection reliability. Beyond conventional bearing diagnosis, envelope spectra are extended for statistical RUL prediction integrating physical knowledge of actual defect conditions. Comparative and ablation studies are conducted against benchmark models to demonstrate their effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597903PMC
http://dx.doi.org/10.3390/s24227257DOI Listing

Publication Analysis

Top Keywords

envelope spectra
16
rul prediction
12
remaining life
8
fault detection
8
rul
7
envelope
5
bearing
5
spectra bearing
4
bearing remaining
4
life intelligent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!