A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqp21ru103l47s6ov4nbqdm71ei796prc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Charge Diffusion and Repulsion in Semiconductor Detectors. | LitMetric

AI Article Synopsis

  • Semiconductor detectors for high-energy sensing are essential in various fields, including astronomy and medical imaging, and require precise characterization for optimal performance.
  • Current simulation methods mainly focus on charge dynamics after photon absorption but often ignore factors like charge diffusion and Coulomb repulsion that affect detector behavior.
  • This study evaluates existing simulation methods and introduces a new Monte Carlo technique that balances accuracy with computational efficiency, improving performance predictions for these detectors.

Article Abstract

Semiconductor detectors for high-energy sensing (X/γ-rays) play a critical role in fields such as astronomy, particle physics, spectroscopy, medical imaging, and homeland security. The increasing need for precise detector characterization highlights the importance of developing advanced digital twins, which help optimize the design and performance of imaging systems. Current simulation frameworks primarily focus on modeling electron-hole pair dynamics within the semiconductor bulk after the photon absorption, leading to the current signals at the nearby electrodes. However, most simulations neglect charge diffusion and Coulomb repulsion, which spatially expand the charge cloud during propagation due to the high complexity they add to the physical models. Although these effects are relatively weak, their inclusion is essential for achieving a high-fidelity replication of real detector behavior. There are some existing methods that successfully incorporate these two phenomena with minimal computational cost, including those developed by Gatti in 1987 and by Benoit and Hamel in 2009. The present work evaluates these two approaches and proposes a novel Monte Carlo technique that offers higher accuracy in exchange for increased computational time. Our new method enables more realistic performance predictions while remaining within practical computational limits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598712PMC
http://dx.doi.org/10.3390/s24227123DOI Listing

Publication Analysis

Top Keywords

charge diffusion
8
semiconductor detectors
8
diffusion repulsion
4
repulsion semiconductor
4
detectors semiconductor
4
detectors high-energy
4
high-energy sensing
4
sensing x/γ-rays
4
x/γ-rays play
4
play critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!