Artifacts in computed tomography and X-ray microtomography are image distortions caused by various factors. Some can be reduced before or during the examination, while others are removed algorithmically after image acquisition. The latter group includes metallic artifacts caused by metal objects in the sample. This paper proposes a new method for eliminating metallic artifacts, applying a bone- and soft-tissue decomposition (BSTD) algorithm to microtomography raw data before the reconstruction process. We show that the decomposition algorithm can effectively remove metallic artifacts in microCT images, which increases the image contrast and allows for better visualization of regions near the metallic elements. For quantity analysis, we computed SSIM and PSNR factors, and we observed values increasing from 0.97 to 0.99 and from 40 dB to 43 dB, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598100 | PMC |
http://dx.doi.org/10.3390/s24227108 | DOI Listing |
Sci Rep
January 2025
Medical Physics, Clinic for Radiology, University of Münster and University Hospital of Münster, 48149, Münster, Albert-Schweitzer-Campus 1, Building A1, Germany.
This study aims to improve our understanding of acute ischemic stroke clot imaging by integrating CT attenuation information with MRI susceptibility signal of thrombi. For this proof-of-principle experimental study, fifty-seven clot analogs were produced using ovine venous blood with a broad histological spectrum. Each clot analog was analyzed to determine its RBC content and chemical composition, including water, Fe III, sodium, pH, and pO2.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.).
Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.
Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.
Radiographics
January 2025
From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).
Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.
View Article and Find Full Text PDFImaging Sci Dent
December 2024
Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy.
Purpose: This study aimed to evaluate the impact of a metal artifact reduction (MAR) algorithm on cone-beam computed tomography (CBCT) scans of titanium and zirconia implants, both within and outside the field of view (FOV).
Materials And Methods: In this study, a dry human mandible was positioned in a CBCT scanner with only its left quadrant included in the FOV. Each type of implant (titanium and zirconia) was placed once in the right second premolar extraction socket and once in the left second premolar extraction socket of the mandible.
Turk J Ophthalmol
December 2024
Kastamonu Training and Research Hospital, Clinic of Ophthalmology, Kastamonu, Türkiye.
We present the case of a patient who came to the emergency department with a significant decrease in vision and dilated pupil in the left eye. Since neurological pathologies were primarily considered, diffusion brain magnetic resonance imaging (MRI) and brain computed tomography (CT) were requested. After the results were reported as normal, we were consulted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!