The presence of antibiotics in seafood for human consumption may pose a risk for consumers. Furthermore, some marine organisms, such as mussels, can result in appropriate bioindicators of marine contamination. In this work, a multiresidue analytical methodology suitable for the determination of antibiotics and metabolites in mussels is proposed. The target compounds include three sulphonamides and trimethoprim (TMP) and six of their main metabolites. Sample treatment involves extraction and clean-up in a single step using matrix solid-phase dispersion with acetonitrile. Analytical determination was carried out by liquid chromatography-tandem mass spectrometry. Good linearity (R > 0.99), accuracy (from 80.8 to 118%), and limits of quantification (lower than 5 ng g (dry matter, dm)) were obtained for all selected compounds. The method was applied to the determination of antibiotics in mussel samples from an exposure assay with contaminated seawater with TMP and sulfamethoxazole (SMX). Both antibiotics were detected in the analysed samples with concentrations up to 77.5 ng g dm. TMP was bioconcentrated to a higher extent than SMX, attributable to its higher hydrophobicity. None of the metabolites were detected. These results demonstrate that is a suitable bioindicator to assess marine pollution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597543 | PMC |
http://dx.doi.org/10.3390/molecules29225478 | DOI Listing |
Sci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFNat Commun
December 2024
Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria.
View Article and Find Full Text PDFNat Commun
December 2024
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
Background: Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis and an important cause of disease in adults. Capsular polysaccharide and protein-based GBS vaccines are currently under development.
Methods: Through national laboratory-based surveillance, invasive GBS isolates were collected from patients of all ages between 2019 and 2020.
Iran J Microbiol
December 2024
Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Jammu and Kashmir, India.
Background And Objectives: The incidence of multidrug-resistant, Gram-negative organisms, isolated as the etiological agents of infections is ascending. The advent of novel antibiotics poses significant challenges, necessitating the optimization and utilization of extant antimicrobial agents. Cefoperazone, a third-generation cephalosporin and β-lactam antimicrobial, when combined with sulbactam, an irreversible β-lactamase inhibitor, mitigates the vulnerability of cefoperazone to β-lactamase-producing organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!