The use of deep eutectic solvents (DESs) as catalysts presents indisputable advantages, for example, their simplicity of preparation, high biodegradability, and recyclability, as well as zero toxicity and their effectiveness as environmentally friendly reaction media. However, aspects related to their reactivity and catalytic activity are still unclear. In this work, we explore the versatility of ChCl/ZnCl DES in the formation of C-C bonds through the Michael-type addition of pyrrole to maleimide, where ChCl/ZnCl DES leads to catalysis and chelation of the substrates, thus describing a recommended method for the construction of C-C bonds with high atomic economy. We describe experimental and theoretical aspects that explain the ability of ChCl/ZnCl DES in the presence of water to act as a catalyst in the formation of C-C bonds between pyrrole and maleimide. The potential energy surface showed that the ChCl and the zinc-zincate species 2ZnCl·3HO, formed by the interaction between zinc chloride and water, decrease the relative free Gibbs energy values for all the species involved in the reaction mechanism (TSs, intermediates, product), favoring the kinetics and thermodynamics of the Michael addition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596833 | PMC |
http://dx.doi.org/10.3390/molecules29225381 | DOI Listing |
Molecules
November 2024
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene glycol) (4-arm-PEG-Mal) and poly(ε-lysine) (ε-PL). The PEG/ε-PL hydrogels, named LG-n, were rapidly formed via amine/maleimide reaction by mixing 4-arm-PEG-Mal and ε-PL under physiological conditions.
View Article and Find Full Text PDFMolecules
November 2024
Departamento de Síntesis Orgánica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico.
The use of deep eutectic solvents (DESs) as catalysts presents indisputable advantages, for example, their simplicity of preparation, high biodegradability, and recyclability, as well as zero toxicity and their effectiveness as environmentally friendly reaction media. However, aspects related to their reactivity and catalytic activity are still unclear. In this work, we explore the versatility of ChCl/ZnCl DES in the formation of C-C bonds through the Michael-type addition of pyrrole to maleimide, where ChCl/ZnCl DES leads to catalysis and chelation of the substrates, thus describing a recommended method for the construction of C-C bonds with high atomic economy.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
J Control Release
January 2025
State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing, China. Electronic address:
Drug delivery efficiency often affects chemotherapy outcome due to dense collagen barrier in tumor environment. Here, we report a nanoparticle capable of pH and glutathione dual-responsive drug delivery to enhance the efficacy of breast cancer chemotherapy. Maleiminated polyethylene glycol and polylactide block copolymer were synthesized as a core material, doxorubicin was encapsulated into the nanoparticle by self-assembly.
View Article and Find Full Text PDFChem Asian J
November 2024
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
An asymmetric synthesis of C-N atropisomers with pyrrole, oxindole and succinimide moities was developed via organocatalytic desymmetric Michael addition of 3-pyrrolyloxindole with prochiral N-aryl maleimides. The C-N atropisomers were obtained in acceptable yields with high diastero- and enantioselectivities (>20 : 1 dr, up to >99 % ee). C-N Rotational energy barrier has also been determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!