Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
: Metallic NPs have been explored for various therapeutic uses owing to utilitarian physicochemical characteristics such as antibacterial, anti-inflammatory, and healing properties. The objective of this study is to evaluate the therapeutic potential of novel silver carbonate nanostructures in promoting wound healing and their antibacterial activity against and . : In this work, we prepared AgCO nanoparticles through a two-step methodology that was expected to improve the material's biomedical performance and biocompatibility. The characterization and assessment of synthesized NPs biocompatibility were conducted using hemolysis assays on the blood of a healthy male human. Further, we performed molecular docking analysis to confirm interactions of silver NPs with biological molecules. : In detail, the synthesized NPs showed <5% hemolysis activity at various concentrations, confirming their therapeutic applicability. Additionally, the NPs had good metabolic activities; they raised the T3/T4 hormone content and acted effectively on Insulin-like Growth Factor 1 (IGF-1) in diabetic models. They also facilitated the rate of repair by having the diabetic wounds reach 100% re-epithelialization by day 13, unlike the control group, which reached the same level only by day 16. The synthesized AgCO NPs exhibited high antimicrobial potential against both and hence being a potential material that can be used for infection control in biomedical tissue engineering applications. : These findings concluded that novel synthesis methods lead to the formation of NPs with higher therapeutic prospects; however, studies of their metaphysical and endocrinological effects are necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597057 | PMC |
http://dx.doi.org/10.3390/ph17111471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!