Machine Learning-Based Software for Predicting spp. Growth Dynamics in Culture Media.

Life (Basel)

Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.

Published: November 2024

In predictive microbiology, both primary and secondary models are widely used to estimate microbial growth, often applied through two-step or one-step modelling approaches. This study focused on developing a tool to predict the growth of spp., a prominent bacterial genus in food spoilage, by applying machine learning regression models, including Support Vector Regression (SVR), Random Forest Regression (RFR) and Gaussian Process Regression (GPR). The key environmental factors-temperature, water activity, and pH-served as predictor variables to model the growth of spp. in culture media. To assess model performance, these machine learning approaches were compared with traditional models, namely the Gompertz, Logistic, Baranyi, and Huang models, using statistical indicators such as the adjusted coefficient of determination (R) and root mean square error (RMSE). Machine learning models provided superior accuracy over traditional approaches, with R values from 0.834 to 0.959 and RMSE values between 0.005 and 0.010, showcasing their ability to handle complex growth patterns more effectively. GPR emerged as the most accurate model for both training and testing datasets. In external validation, additional statistical indices (bias factor, : 0.998 to 1.047; accuracy factor, : 1.100 to 1.167) further supported GPR as a reliable alternative for microbial growth prediction. This machine learning-driven approach bypasses the need for the secondary modelling step required in traditional methods, highlighting its potential as a robust tool in predictive microbiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595956PMC
http://dx.doi.org/10.3390/life14111490DOI Listing

Publication Analysis

Top Keywords

machine learning
12
culture media
8
predictive microbiology
8
microbial growth
8
growth spp
8
growth
6
machine
5
models
5
machine learning-based
4
learning-based software
4

Similar Publications

Network-Based Identification of Key Toxic Compounds in Airborne Chemical Exposome.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.

View Article and Find Full Text PDF

A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.

View Article and Find Full Text PDF

Clinical utility of tumor-infiltrating lymphocyte evaluation by two different methods in breast cancer patients treated with neoadjuvant chemotherapy.

Breast Cancer

January 2025

Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.

Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.

Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.

View Article and Find Full Text PDF

End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.

View Article and Find Full Text PDF

The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!