The purpose of this research is to contribute to the development of approaches for the classification and segmentation of various gastrointestinal (GI) cancer diseases, such as dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis. This research is relevant and essential because of the current challenges related to the absence of efficient diagnostic tools for early diagnostics of GI cancers, which are fundamental for improving the diagnosis of these common diseases. To address the above challenges, we propose a new hybrid segmentation model, U-MaskNet, which is a combination of U-Net and Mask R-CNN models. Here, U-Net is utilized for pixel-wise classification and Mask R-CNN for instance segmentation, together forming a solution for classifying and segmenting GI cancer. The Kvasir dataset, which includes 8000 endoscopic images of various GI cancers, is utilized to validate the proposed methodology. The experimental results clearly demonstrated that the novel proposed model provided superior segmentation compared to other well-known models, such as DeepLabv3+, FCN, and DeepMask, as well as improved classification performance compared to state-of-the-art (SOTA) models, including LeNet-5, AlexNet, VGG-16, ResNet-50, and the Inception Network. The quantitative analysis revealed that our proposed model outperformed the other models, achieving a precision of 98.85%, recall of 98.49%, and F1 score of 98.68%. Additionally, the novel model achieved a Dice coefficient of 94.35% and IoU of 89.31%. Consequently, the developed model increased the accuracy and reliability in detecting and segmenting GI cancer, and it was proven that the proposed model can potentially be used for improving the diagnostic process and, consequently, patient care in the clinical environment. This work highlights the benefits of integrating the U-Net and Mask R-CNN models, opening the way for further research in medical image segmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595444 | PMC |
http://dx.doi.org/10.3390/life14111488 | DOI Listing |
Waste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
AI-based breast cancer detection can improve the sensitivity and specificity of detection, especially for small lesions, which has clinical value in realizing early detection and treatment so as to reduce mortality. The two-stage detection network performs well; however, it adopts an imprecise ROI during classification, which can easily include surrounding tumor tissues. Additionally, fuzzy noise is a significant contributor to false positives.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Artificial Intelligence Development Center, Changhua Christian Hospital, Changhua 50050, Taiwan.
: Microcalcifications in the breast are often an early warning sign of breast cancer, and their accurate detection is crucial for the early discovery and management of the disease. In recent years, deep learning technology, particularly models based on object detection, has significantly improved the ability to detect microcalcifications. This study aims to use the advanced YOLO-v8 object detection algorithm to identify breast microcalcifications and explore its advantages in terms of performance and clinical application.
View Article and Find Full Text PDFPeerJ
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Objective: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.
Methods: A retrospective analysis was conducted with 208 patients aged 14 to 44. A total of 624 high-quality digital images captured under standardized conditions were used to construct a deep learning model based on the Mask region-based convolutional neural network (Mask R-CNN).
Curr Med Imaging
January 2025
Xi'an Institute of Optics and Precision Mechanics of CAS, No.17, Information Avenue, New Industrial Park, Gaoxin District, Xi 'an, China.
Background: Cervical cancer is a prevalent malignancy among women, often asymptomatic in early stages, complicating detection.
Objective: This study aims to investigate innovative techniques for early cervical cancer detection using a novel U-RCNNS model.
Methods: Cervical epithelial cell images stained with hematoxylin and eosin (HE) were analyzed using the U-RCNNS model, which integrates U-Net for segmentation and R-CNN for object detection, incorporating dilated convolution techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!