Background: Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole.

Objective: To develop and evaluate a solid SMEDDS (self-microemulsifying drug delivery system) for antifungal activity.

Methods: Based on solubility studies of Labrafil-M 1994 CS (oil), Cremophor-RH 40 (a surfactant) and Transcutol-HP (a co-surfactant) were selected as components of the SMEDDS and a pseudo-ternary phase diagram was prepared. Thereafter, the oil, surfactant, and co-surfactant were mixed with altered weight ratios (1:1/1:2/2:1) and evaluated through various in vitro, in vivo analyses.

Results: The particle size of the optimized formulation was observed to be 19.04 nm and the polydispersity index (PDI) value was found to be 0.162 with steady-state zeta potential. The optimized liquid SMEDDS was converted into a solid SMEDDS. Various adsorbents, such as Aerosil-200, Avicel-PH101, Neusilin-US2, and Neusilin UFL2 were screened to better detect the oil-absorbing capacity and flow properties of the powder. Neusilin UFL2 was selected as an adsorbent due to its better oil-absorbing capacity. DSC, X-ray diffraction, and dissolution studies were carried out to characterize the formulation. Further, the Pharmacokinetic profile was also studied in Wistar rats and the Cmax, tmax, and AUC0→t were calculated. The Cmax and AUC0→t plasma concentration is considerably better for the SMEDDS than for the pure drug and marketed formulation.

Conclusions: This investigation clearly reveals the potential of developing a solid SMEDDS for candidiasis and invasive aspergillosis treatment, with better efficacy as compared to the commercially available marketed formulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595337PMC
http://dx.doi.org/10.3390/life14111417DOI Listing

Publication Analysis

Top Keywords

solid smedds
16
neusilin ufl2
8
oil-absorbing capacity
8
smedds
7
development analysis
4
analysis determination
4
determination pharmacokinetic
4
pharmacokinetic properties
4
solid
4
properties solid
4

Similar Publications

The lack of local availability for drugs in the colon can be addressed by preparing a self-microemulsifying drug delivery system (SMEDDS) of curcumin (Cur) which is ultimately used for the treatment of inflammatory bowel disease (IBD). From preformulation studies, Lauroglycol FCC (oil), Tween 80 (surfactant), Transcutol HP (co-surfactant), and Avicel (solid carrier) were selected for the preparation of blank liquid and solid Cur-loaded SMEDDSs (S-Cur-SMEDDSs). Z-average size (12.

View Article and Find Full Text PDF

Background: Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates improving the delivery of tacrolimus (FK506), an immunosuppressant, by using a self-microemulsifying drug delivery system (SMEDDS) to enhance its solubility and bioavailability.
  • - Liquid SMEDDS was solidified using Aeroperl® 300 Pharma, which showed excellent performance in drug dissolution and compatibility, and achieving complete drug release was facilitated by precoating with polyvinylpyrrolidone K30.
  • - The resulting hydroxypropyl methylcellulose-based tablets demonstrated a significant increase in bioavailability (179.02%) compared to the marketed formulation Advagraf®, suggesting a promising direction for future SMEDDS applications.
View Article and Find Full Text PDF

Background: Budesonide (BUD) is a BCS class II medication with poor water solubility and limited oral bioavailability. In this study, innovative solid self-microemulsifying drug delivery systems (BUD-SMEDDS) were developed for effective local management of distal ulcerative colitis (UC).

Methods: Based on solubility and emulsification tests, the components of the self-microemulsifying drug delivery system (SMEDDS) were Capryol™ 90, Tween 80, and Transcutol HP.

View Article and Find Full Text PDF

Single-Step Extrusion Process for Formulation Development of Self-Emulsifying Granules for Oral Delivery of a BCS Class IV Drug.

Mol Pharm

December 2024

Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.

Article Synopsis
  • This study focuses on improving the solubility and permeability of a BCS Class IV drug by developing self-emulsifying solid lipid matrices as a new form of drug delivery system.
  • Self-emulsifying drug delivery systems (SEDDS) are helpful for poorly soluble drugs but face manufacturing challenges like low drug loading and stability issues.
  • The research explores using a single-step extrusion process to create solid self-emulsifying granules with higher drug loading, which demonstrated significantly improved solubility and permeability, enhancing the potential for effective drug delivery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!