Sleep Architecture Changes in Diabetes.

J Clin Med

Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.

Published: November 2024

AI Article Synopsis

  • Evidence suggests slow-wave sleep (SWS) is essential for maintaining glucose levels and insulin secretion, with diabetes often linked to decreased SWS.
  • Selectively reducing SWS, without affecting total sleep time, can significantly worsen insulin resistance and increase diabetes risk.
  • The review highlights the need to understand sleep patterns in individuals with diabetes to explore non-drug interventions that could improve glycemic control.

Article Abstract

Data on the relationship between sleep architecture and diabetes are limited. However, some evidence suggests that slow-wave sleep (SWS) plays a crucial role in maintaining normal glucose homeostasis and influences insulin secretion capacity. Diabetes is often associated with reduced SWS, even in the absence of sleep-disordered breathing. Notably, selective suppression of SWS-without reducing total sleep time-can lead to significant increases in insulin resistance, decreased glucose tolerance, and a higher risk of diabetes. Given the growing interest in non-pharmacological lifestyle interventions, such as modifying sleep architecture, it is important to understand how sleep patterns differ in individuals with diabetes and whether these alterations impact diabetes risk and glycemic control. This review aims to provide a concise overview of the current findings on sleep architecture changes in people with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594902PMC
http://dx.doi.org/10.3390/jcm13226851DOI Listing

Publication Analysis

Top Keywords

sleep architecture
16
architecture changes
8
sleep
7
diabetes
7
changes diabetes
4
diabetes data
4
data relationship
4
relationship sleep
4
architecture diabetes
4
diabetes limited
4

Similar Publications

Background: While bedtime procrastination is commonly associated with adverse outcomes such as poor sleep quality, the mechanisms mediating these effects remain underexplored. Grounded in the Self-Regulation Model of Behavior and the Transactional Model of Stress and Coping, this study examines the mediating role of cognitive reappraisal in the relationship between bedtime procrastination and sleep quality over time.

Methods: Employing a longitudinal design, the study examined the progression of bedtime procrastination, cognitive reappraisal, and sleep quality among university students at three distinct time points throughout an academic semester.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Sleep and circadian rhythms after traumatic brain injury.

Handb Clin Neurol

January 2025

Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada. Electronic address:

Traumatic brain injury (TBI) is a serious public health concern and is one of the major causes of death and chronic disability in young individuals. Sleep-wake disturbances are among the most persistent and debilitating consequences of TBI and are reported by 50%-70% of TBI patients regardless of TBI severity. Excessive daytime sleepiness, fatigue, hypersomnia, and insomnia are the most common sleep disturbances in TBI patients.

View Article and Find Full Text PDF

We explore an innovative approach to sleep stage analysis by incorporating complexity features into sleep scoring methods for mice. Traditional sleep scoring relies on the power spectral features of electroencephalogram (EEG) and the electromyogram (EMG) amplitude. We introduced a novel methodology for sleep stage classification based on two types of complexity analysis, namely multiscale entropy and detrended fluctuation analysis.

View Article and Find Full Text PDF

Limited research has examined the effect of meal composition on sleep. Based on previous research, we hypothesized that a low glycemic index (LGI) drink containing 50 g isomaltulose (Palatinose, GI = 32) would result in more N3 sleep, less rapid eye movement (REM) sleep, and better memory consolidation than a high glycemic index (HGI) drink containing 50 g glucose (GI = 100). Healthy males (n = 20) attended the laboratory on three occasions at least a week apart (one acclimatization night and two test nights).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!