A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface Nanocrystallization and Improvement of the Mechanical and Tribological Properties of AISI 304 Steel Using Multi-Pass Nanostructuring Burnishing. | LitMetric

Owing to their high producibility and resistance to corrosion, austenitic chromium-nickel steels are widely used in the chemical, petroleum, and food industries. However, their significant disadvantage lies in their poor structural performance, which cannot be improved by heat treatment. This significantly limits the usability of these steels in parts of machines that operate under friction loads. Hardening can be achieved by decreasing the size of grains and applying deformation-induced martensitic transformation. Nanostructuring burnishing (NSB) may be one of the technologies suited for producing parts of tribological assemblies with enhanced operating characteristics. Nanostructuring burnishing using a sliding indenter is being developed as a method of industrial surface nanocrystallization through severe plastic deformation used in the mechanical machining of various types of parts. This article investigates the possibility of enhancing the mechanical and tribological properties of nanocrystallized surfaces of austenitic steels, which are formed through nanostructuring burnishing using a tool with a natural diamond spherical indenter and a change in sliding speed from 40 to 280 m/min with one, three, and five passes. Increasing the tool sliding speed makes surface nanostructuring machining of big parts highly effective. This paper aims to establish the influence exerted by the sliding speed and number of indenter passes on the formation of a nanocrystalline structure, as well as on the modification of microhardness and residual stresses, texture, and tribological properties of the surface layer in the nanostructuring burnishing of AISI 304 steel. Transmission microscopy and microdurometry, 3D-profilometry, and tribological tests of surfaces nanocrystallized with the "ball-on-disk" scheme with dry and lubricated friction established the optimal values of speed and number of passes for a spherical indenter in nanostructuring burnishing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595588PMC
http://dx.doi.org/10.3390/ma17225656DOI Listing

Publication Analysis

Top Keywords

nanostructuring burnishing
24
tribological properties
12
sliding speed
12
surface nanocrystallization
8
mechanical tribological
8
aisi 304
8
304 steel
8
spherical indenter
8
speed number
8
nanostructuring
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!