This work presents a novel infill method for additive manufacturing, specifically designed to optimize material use and enhance stiffness in fused filament fabrication (FFF) parts through a geometry-aware, corrugated design inspired by sandwich structures. Unlike standard infill patterns, which typically employ uniform, space-filling grids that often disregard load-specific requirements, this method generates a cavity inside the component to be printed and fill the space between inner and outer contours with continuous, adaptable extrusion paths. This design enables consistent support and improved load distribution, making it particularly effective for parts under bending stresses, as it enhances structural resilience without requiring additional material. Simulations performed on a 10 cm test part using this method showed potential reductions in material consumption by up to 77% and a decrease in print time by 78%, while maintaining stiffness comparable to parts using conventional 100% grid infill. Additionally, simulations demonstrated that the new corrugated infill pattern provides near-isotropic stiffness, addressing the anisotropic limitations often seen in traditional infill designs that are sensitive to load orientation. This geometry-aware infill strategy thus contributes to balanced stiffness across complex geometries, enhancing reliability under mechanical loads. By integrating directly with slicer software, this approach simplifies advanced stiffness optimization without the necessity of finite element analysis-based topology optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595462 | PMC |
http://dx.doi.org/10.3390/ma17225596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!