Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through simulation analysis. Both structures demonstrate increased drain current and transconductance with increasing Al content in the barrier layer. However, HEMTs with a CdZnO layer exhibit higher drain current compared to those with an InGaN layer at the same Al content. The breakdown voltage decreases rapidly with increasing Al content, attributed to changes in electric field distribution. HEMTs with a CdZnO/GaN channel exhibit a slightly higher breakdown voltage (~795 V) compared to those with an InGaN/GaN channel (~768 V) at a lower Al content of x = 0.10. These results suggest that CdZnO-based HEMTs have significant potential for high-power, high-frequency applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596008 | PMC |
http://dx.doi.org/10.3390/ma17225560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!