This study primarily presents a numerical investigation of the dynamic behavior and vibration control in thin-walled, additively manufactured (AM) beam structures, validated through experimental results. Vibration control in thin-walled structures has gained significant attention recently because vibrations can severely affect structural integrity. Therefore, it is necessary to minimize these vibrations or keep them within acceptable limits to ensure the structure's integrity. In this study, the AM beam structures were made of polylactic acid polymer (PLAP), short carbon fiber reinforced in PLAP (SCFR|PLAP), and continuous carbon fiber reinforced in PLAP (CCFR|PLAP), with 0°|0° layer orientations. The finite element modeling (FEM) of the AM beam structures integrated with macro fiber composite (MFC) was carried out in Abaqus. The initial four modal frequencies of bending modes (BMs) and their respective modal shapes were acquired through numerical simulation. It is crucial to highlight the numerical findings that reveal discrepancies in the 1st modal frequencies of the beams, ranging up to 1.5% compared to their respective experimental values. For the 2nd, 3rd, and 4th modal frequencies, the discrepancies are within 10%. Subsequently, frequency response analysis (FRA) was carried out to observe the frequency-dependent vibration amplitude spectrum at the initial four BM frequencies. Despite discrepancy in the amplitude values between the numerical and experimental datasets, there was consistency in the overall amplitude behavior as frequency varied. THz spectroscopy was performed to identify voids or misalignment errors in the actual beam models. Finally, vibration amplitude control using MFC (M8507-P2) was examined in each kinematically excited numerical beam structure. After applying a counterforce with the MFC, the controlled vibration amplitudes for the PLAP, SCFR|PLAP, and CCFR|PLAP configurations were approximately ±19 µm, ±16 µm, and ±13 µm, respectively. The trend in the controlled amplitudes observed in the numerical findings was consistent with the experimental results. The numerical findings of the study reveal valuable insights for estimating trends related to vibration control in AM beam structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595712PMC
http://dx.doi.org/10.3390/ma17225478DOI Listing

Publication Analysis

Top Keywords

beam structures
20
vibration control
16
modal frequencies
12
numerical findings
12
additively manufactured
8
polylactic acid
8
acid polymer
8
polymer plap
8
numerical
8
numerical investigation
8

Similar Publications

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

High-resolution phase-contrast 3D imaging using nano-holotomography typically requires collecting multiple tomograms at varying sample-to-detector distances, usually 3 to 4. This multi-distance approach limits temporal resolution, making it impractical for studies. Moreover, shifting the sample complicates reconstruction, requiring precise alignment, registration, and interpolation to correct for shift-dependent magnification on the detector.

View Article and Find Full Text PDF

Single-shot ptychography is a quantitative phase imaging method wherein overlapping beams of light arranged in a grid pattern simultaneously illuminate a sample, allowing a full ptychographic dataset to be collected in a single shot. It is primarily used at optical wavelengths, but there is interest in using it for x-ray imaging. However, constraints imposed by x-ray optics have limited the resolution achievable to date.

View Article and Find Full Text PDF

A scalar, harmonic beam-like field possessing an arbitrary number of orbital angular momentum (OAM) components is shown to trace an ellipse, termed here the orbitalization ellipse, at a given transverse cross section and radius, in the space spanned by the spiral OAM basis. The plane and the structure of the ellipse can be readily found by constructing its conjugate semi-diameter vectors from the OAM components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!