AI Article Synopsis

  • Mixing cement-based materials for optimal workability is a complex and labor-intensive process, which can be streamlined using AI techniques.
  • Experimental tests produced a dataset of 233 samples focused on key workability factors like fluidity and viscosity, using various material inputs including cement and additives.
  • Machine learning models, specifically enhanced versions like PSO-based CatBoost and XGBoost, were developed to predict workability metrics, with additional analysis to understand how each input affects these properties.

Article Abstract

Controlling workability during the design stage of cement-based material mix ratios is a highly time-consuming and labor-intensive task. Applying artificial intelligence (AI) methods to predict and optimize the workability of cement-based materials can significantly enhance the efficiency of mix design. In this study, experimental testing was conducted to create a dataset of 233 samples, including fluidity, dynamic yield stress, and plastic viscosity of cement-based materials. The proportions of cement, fly ash (FA), silica fume (SF), water, superplasticizer (SP), hydroxypropyl methylcellulose (HPMC), and sand were selected as inputs. Machine learning (ML) methods were employed to establish predictive models for these three early workability indicators. To improve prediction capability, optimized hybrid models, such as Particle Swarm Optimization (PSO)-based CatBoost and XGBoost, were adopted. Furthermore, the influence of individual input variables on each workability indicator of the cement-based material was examined using Shapley Additive Explanations (SHAP) and Partial Dependence Plot (PDP) analyses. This study provides a novel reference for achieving rapid and accurate control of cement-based material workability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595406PMC
http://dx.doi.org/10.3390/ma17225400DOI Listing

Publication Analysis

Top Keywords

cement-based materials
12
cement-based material
12
machine learning
8
cement-based
6
workability
5
learning driven
4
driven fluidity
4
fluidity rheological
4
rheological properties
4
properties prediction
4

Similar Publications

Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

Materials (Basel)

January 2025

Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.

View Article and Find Full Text PDF

The Influence of Rice Husk Ash Incorporation on the Properties of Cement-Based Materials.

Materials (Basel)

January 2025

Green Environmental Protection Industry Co., Ltd., Guiyang 551109, China.

Rice husk ash is a kind of biomass material. Its main component is silicon dioxide, with a content of up to 80%. It has high pozzolanic activity and can react with hydroxide in cement.

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.

View Article and Find Full Text PDF

Vegetable Fibers in Cement Composites: A Bibliometric Analysis, Current Status, and Future Outlooks.

Materials (Basel)

January 2025

Department of Construction Engineering and Projects of Engineering, University of Granada, 18071 Granada, Spain.

The use of vegetable fibers (VFs) in cement-based composites has increased in recent years owing to their minimal environmental impact and notable particular properties. VFs have aroused interest within the scientific community because of their potential as a sustainable alternative for construction. This study presents a comprehensive bibliometric analysis of VFs in cement composites using data from the Scopus database and scientometric tools to explore publication trends, influential sources, and research directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!