Flexible pressure sensors are increasingly recognized for their potential use in wearable electronic devices, attributed to their sensitivity and broad pressure response range. Introducing surface microstructures can notably enhance sensitivity; however, the pressure response range remains constrained by the limited volume of the compressible structure. To overcome this limitation, this study implements an aligned airgap structure fabricated using 3D printing technology. This structure, designed with a precisely aligned triaxial airgap configuration, offers high deformability under pressure, substantially broadening the pressure response range and improving sensitivity. This study analyzes the key structural parameters-the number of axes and pore size-that influence the compressibility and stability of the dielectric material. The results indicate that the capacitive pressure sensor with an aligned airgap structure, manufactured via 3D printing, exhibits a wide operating pressure range (50 Pa to 500 kPa), rapid response time (100 ms), wide limit of detection (50 Pa), and approximately 21 times enhancement in sensitivity (~0.019 kPa within 100 kPa) compared with conventional bulk structures. Furthermore, foot pressure monitoring trials for wearable sensor applications demonstrated exceptional performance, indicating the sensor's suitability as a wearable device for detecting plantar pressure. These findings advocate for the potential of 3D printing technology to supplant traditional sensor manufacturing processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596244PMC
http://dx.doi.org/10.3390/mi15111347DOI Listing

Publication Analysis

Top Keywords

pressure response
12
response range
12
pressure
10
capacitive pressure
8
pressure sensor
8
aligned airgap
8
airgap structure
8
printing technology
8
3d-printed multi-axis
4
multi-axis alignment
4

Similar Publications

Background: Mobile health apps have shown promising results in improving self-management of several chronic diseases in patients. We have developed a mobile health app (Cardiomeds) dedicated to patients with heart failure (HF). This app includes an interactive medication list; daily self-monitoring of symptoms, weight, blood pressure, and heart rate; and educational information on HF delivered through various formats.

View Article and Find Full Text PDF

HILIC-MS/MS Multi-targeted Method for Metabolomics Applications.

Methods Mol Biol

January 2025

Biomic Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation, Aristotle University, Thessaloniki, Greece.

Metabolomics aims at identification and quantitation of key end point metabolites, basically polar, in order to study changes in biochemical activities in response to pathophysiological stimuli or genetic modifications. Targeted profiling assays enjoying a growing popularity over the last years with LC-MS/MS as a powerful tool for development of such (semi-)quantitative methods for a large number of metabolites. Here we describe a method for absolute quantitation of ca.

View Article and Find Full Text PDF

Background: Patients with an elevated admission National Early Warning Score (NEWS) are more likely to die while in hospital. However, it is not known if this increased mortality risk is the same for all diagnoses. The aim of this study was to determine and compare the increased risk of in-hospital mortality associated with an elevated NEWS and different primary discharge diagnoses in unselected emergency admissions to a UK university teaching hospital.

View Article and Find Full Text PDF

An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis.

View Article and Find Full Text PDF

Positive end-expiratory pressure (PEEP) improves respiratory conditions. However, the complex interaction between PEEP and hemodynamics in heart failure patients makes it challenging to determine appropriate PEEP settings. In this study, we developed a framework for the impact of PEEP on hemodynamics considering cardiac function, by integrating the impact of PEEP in the generalized circulatory equilibrium framework, and validated the framework by assessing its ability to accurately predict PEEP-induced hemodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!