A Review on Resonant MEMS Electric Field Sensors.

Micromachines (Basel)

School of Mathematics and Physics, Beijing Weak Magnetic Testing and Applied Engineering Technology Research Center, University of Science and Technology Beijing, Beijing 100083, China.

Published: October 2024

Electric field sensors (EFSs) are widely used in various fields, particularly in accurately assessing atmospheric electric fields and high-voltage power lines. Precisely detecting electric fields enhances the accuracy of weather forecasting and contributes to the safe operation of power grids. This paper comprehensively reviews the development of micro-electromechanical system (MEMS) resonant EFSs, including theoretical analysis, working principles, and applications. MEMS resonant EFSs have developed into various structures over the past decades. They have been reported to measure electric field strength by detecting changes in the induced charge on the electrodes. Significant advancements include diverse driving and sensing structures, along with improved dynamic range, sensitivity, and resolution. Recently, mode localization has gained attention and has been applied to electric field sensing. This paper reviews the performances and structures of MEMS resonant EFSs over recent decades and highlights recent advances in weakly coupled resonant EFSs, offering comprehensive guidance for researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596163PMC
http://dx.doi.org/10.3390/mi15111333DOI Listing

Publication Analysis

Top Keywords

electric field
16
resonant efss
16
mems resonant
12
field sensors
8
electric fields
8
electric
6
efss
5
review resonant
4
mems
4
resonant mems
4

Similar Publications

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!