Assessment of the Risk of Crack Formation at a Hybrid Bonding Interface Using Numerical Analysis.

Micromachines (Basel)

Intelligent Semiconductor Engineering Department, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Published: October 2024

Hybrid bonding technology has recently emerged as a promising solution for advanced semiconductor packaging technologies. However, several reliability issues still pose challenges for commercialization. In this study, we investigated the possibility of crack formation caused by chemical mechanical polishing (CMP) defects and the misalignment of the hybrid bonding structure. Crack formation and thermomechanical stress were analyzed for two common hybrid bonding structures with misalignment using a numerical simulation. The effects of annealing temperature and dishing value on changes in the non-bonding area and peeling stress were systematically analyzed. The calculated peeling stresses were compared to the bonding strength of each bonding interface to find vulnerable regions prone to cracking. The non-bonding area in the bonding structure increased with a decreasing annealing temperature and an increasing dishing value. To achieve a sufficient bonding area of more than 90%, the annealing temperature should be greater than 200 °C. During the heating period of the annealing process, the SiCN-to-SiCN bonding interface was the most vulnerable cracking site with the highest peeling stress. An annealing temperature of 350 °C carries a significant risk of cracking. On the other hand, an annealing temperature lower than 250 °C will minimize the chance of cracking. The SiCN-to-SiO bonding interface, which has the lowest adhesion energy and a large coefficient of thermal expansion (CTE) mismatch, was expected to be another possible cracking site. During cooling, the SiCN-to-Cu bonding interface was the most vulnerable site with the highest stress. However, the simulated peeling stresses were lower than the adhesion strength of the bonded interface, indicating that the chance of cracking during the cooling process was very low. This study provides insights into minimizing the non-bonding area and preventing crack formation, thereby enhancing the reliability of hybrid bonding structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596146PMC
http://dx.doi.org/10.3390/mi15111332DOI Listing

Publication Analysis

Top Keywords

hybrid bonding
20
bonding interface
20
annealing temperature
20
crack formation
16
bonding
12
non-bonding area
12
bonding structure
8
bonding structures
8
peeling stress
8
peeling stresses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!