Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser.

Micromachines (Basel)

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: October 2024

AI Article Synopsis

  • The study details the creation of micro/nano structures using femtosecond laser processing, which incorporate periodic microstructures, LIPSS, and nanoparticles.
  • Perfluorosilane modification was applied to develop hydrophobic characteristics, resulting in an impressive reflective reduction of silicon surfaces to 3.0% and a high contact angle of 172.3°, indicating superhydrophobicity.
  • The research contributes to understanding anti-reflection and superhydrophobicity mechanisms while offering new design methods for self-cleaning and anti-reflective surfaces.

Article Abstract

In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity's influence mechanisms of structural height, duty cycle, and size are experimentally elucidated. The average reflectivity of the silicon surface in the visible light band is reduced to 3.0% under the optimal parameters, and the surface exhibits a large contact angle of 172.3 ± 0.8° and a low sliding angle of 4.2 ± 1.4°. Finally, the durability of the anti-reflection and superhydrophobicity is also confirmed. This study deepens our understanding of the principles of anti-reflection and superhydrophobicity and expands the design and preparation methods for self-cleaning and anti-reflective surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596805PMC
http://dx.doi.org/10.3390/mi15111304DOI Listing

Publication Analysis

Top Keywords

anti-reflection superhydrophobicity
12
silicon surface
8
fabricated femtosecond
8
femtosecond laser
8
micro/nano structures
8
hierarchical micro/nanostructures
4
micro/nanostructures anti-reflection
4
superhydrophobicity silicon
4
surface
4
surface fabricated
4

Similar Publications

Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser.

Micromachines (Basel)

October 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • The study details the creation of micro/nano structures using femtosecond laser processing, which incorporate periodic microstructures, LIPSS, and nanoparticles.
  • Perfluorosilane modification was applied to develop hydrophobic characteristics, resulting in an impressive reflective reduction of silicon surfaces to 3.0% and a high contact angle of 172.3°, indicating superhydrophobicity.
  • The research contributes to understanding anti-reflection and superhydrophobicity mechanisms while offering new design methods for self-cleaning and anti-reflective surfaces.
View Article and Find Full Text PDF

Superhydrophobic coatings with remarkable water repellence have emerged as an increasingly prominent field of research with the growth of the material engineering and coating industries. Superhydrophobic coatings address the requirements of several application areas with characteristics including corrosion resistance, drag reduction, anti-icing, anti-fogging, and self-cleaning properties. Furthermore, the range of applications for superhydrophobic coatings has been substantially broadened by the inclusion of key performance features such as flame retardancy, thermal insulation, resistance to water penetration, UV resistance, transparency, anti-reflection, and many more.

View Article and Find Full Text PDF

A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications.

Environ Sci Pollut Res Int

August 2023

Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi, 830047, China.

Photovoltaic power generation is developing rapidly with the approval of The Paris Agreement in 2015. However, there are many dust deposition problems that occur in desert and plateau areas. Traditional cleaning methods such as manual cleaning and mechanical cleaning are unstable and produce a large economic burden.

View Article and Find Full Text PDF

Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures.

Nanomaterials (Basel)

June 2023

International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.

A microstructure determines macro functionality. A controlled periodic structure gives the surface specific functions such as controlled structural color, wettability, anti-icing/frosting, friction reduction, and hardness enhancement. Currently, there are a variety of controllable periodic structures that can be produced.

View Article and Find Full Text PDF

Currently, there is high demand for the development of a highly mass-producible technology for manufacturing moth-eye-structured films with an antireflection function. Conventional moth-eye-structured films have been produced by roll-to-roll (RTR) ultraviolet nanoimprint lithography (UV-NIL) using porous alumina, but the process of manufacturing the roll mold with aluminum is both complicated and time-consuming. To solve this problem, we proposed a sputtering process for forming a thin film of glassy carbon on a roll substrate and fabricated a moth-eye structure through the irradiation of oxygen plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!