Biodiversity Patterns and DNA Barcode Gap Analysis of COI in Coastal Lagoons of Albania.

Biology (Basel)

Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, Via Monteroni 165, 73100 Lecce, Italy.

Published: November 2024

Aquatic biodiversity includes a variety of unique species, their habitats, and their interactions with each other. Albania has a large hydrographic network including rivers, lakes, wetlands and coastal marine areas, contributing to a high level of aquatic biodiversity. Currently, evaluating aquatic biodiversity relies on morphological species identification methods, but DNA-based taxonomic identification could improve the monitoring and assessment of aquatic ecosystems. This study aims to evaluate the coverage of COI DNA barcodes in the reference libraries for the known aquatic animal species present in the coastal lagoons of Albania. In this study, the six most studied coastal lagoons of Albania were selected. Species data were gathered from the scientific literature and publicly available sites and studies. The collected species lists were taxonomically standardised using global public taxonomic databases like WORMS. The standardised lists were used to analyse the barcode gap of COI based on two public DNA barcode libraries: Barcode of Life Data Systems (BOLD) and NCBI GenBank. The results show that the COI DNA barcode gap in the coastal lagoons of Albania ranges from 7% (Lagoon of Patok) to 33% (Karavasta Lagoon). Fishes and Amphibia represent the groups with the lowest barcode gap (8% each), while Annelida shows the highest (47%). In conclusion, the COI gene marker for DNA-based biodiversity assessments is reliable for the coastal lagoons of Albania.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592379PMC
http://dx.doi.org/10.3390/biology13110951DOI Listing

Publication Analysis

Top Keywords

coastal lagoons
20
lagoons albania
20
barcode gap
16
dna barcode
12
aquatic biodiversity
12
coi dna
8
barcode
6
coastal
6
albania
6
biodiversity
5

Similar Publications

Interactions between contaminants and the trophic ecology of two seabirds in a coastal lagoon of the Gulf of California.

Ecotoxicology

January 2025

Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México.

Monitoring the dynamics of contaminants in ecosystems helps understand their potential effects. Seabirds have been used as biomonitors of marine ecosystems for this purpose. However, exposure and vulnerability to pollutants are understudied in tropical species, and the relationships between various pollutants and the trophic ecology of seabirds are poorly understood.

View Article and Find Full Text PDF

Coastal lagoons, which cover about 13% of coastline, are among the most productive ecosystems worldwide. However, they are subject to significant stressors, both natural and anthropogenic, which can alter ecosystem services and functioning and food web structure. In the Comacchio Lagoon (Northern Italy), eutrophication, among other minor factors, transformed the ecosystem in the early 1980s.

View Article and Find Full Text PDF

Persistent shifts to undesired ecological states, such as shifts from coral to macroalgae, are becoming more common. This highlights the need to understand processes that can help restore affected ecosystems. Herbivory on coral reefs is widely recognized as a key interaction that can keep macroalgae from outcompeting coral.

View Article and Find Full Text PDF

The fishery biology of the invasive Atlantic blue crab in the Mediterranean Sea outside the eastern sectors of the basin has been only recently investigated. Here we studied the population of in the Lesina Lagoon (Adriatic Sea, SE Italy). In total, 838 crabs were captured monthly between February 2021 and January 2022 using fyke nets.

View Article and Find Full Text PDF

Coastal redox shifts over the past 167 years and preservation of total organic carbon and total nitrogen.

Mar Pollut Bull

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

This study reconstructs the environmental history of Xincun Lagoon over the past 167 years using sediment core XCW, employing Cu/Zn as a proxy for redox changes. Time-series analysis of Cu/Zn ratios reveals a significant decline (linear regression slope = -0.00082, p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!