Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyphenisms, the capability of organisms to form two or more alternative phenotypes in response to environmental variation, are prevalent in nature. However, associated molecular mechanisms and potential general principles of polyphenisms among major organismal groups remain currently unknown. This review focuses on an emerging model system for developmental plasticity and polyphenism research, the nematode and explores mechanistic insight obtained through unbiased genetic, experimental and natural variation studies. Resulting findings identify a central role for epigenetic switches in the environmental control of alternative phenotypes and their micro-and macroevolution. Several features observed in are shared with insects and plants and might become general principles for the control of polyphenisms during development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591871 | PMC |
http://dx.doi.org/10.3390/biology13110922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!