Neurotrophins (NTs) constitute a family of small protein messengers that play a fundamental role in both the central and peripheral nervous systems. In particular, the nerve growth factor (NGF) and the brain-derived neurotrophic factor (BDNF) play a subtle role in the survival, differentiation, and functioning of neuronal populations, as well as in the fine regulation of immune functions. The SARS-CoV-2 infection was characterized by a sequela of symptoms (serious respiratory pathology, inflammatory storm, neurological discomfort, up to the less serious flu-like symptoms), which caused, at the end of 2023, more than 7 million deaths worldwide. Despite the official end of the pandemic, the physical and psychological consequences are currently the object of scientific research, both acute and chronic/long-lasting (Long-COVID-19). Given the multifactorial nature of the outcomes of SARS-CoV-2 infection in adults and children, several studies have investigated the potential involvement of the NGF and BDNF systems in the pathology. This narrative review aims to summarize the most recent evidence on this crucial topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591877PMC
http://dx.doi.org/10.3390/biology13110907DOI Listing

Publication Analysis

Top Keywords

nerve growth
8
growth factor
8
brain-derived neurotrophic
8
neurotrophic factor
8
sars-cov-2 infection
8
factor
4
factor brain-derived
4
factor covid-19
4
covid-19 neurotrophins
4
neurotrophins nts
4

Similar Publications

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Increased nerve density adversely affects outcome in colorectal cancer and denervation suppresses tumor growth.

J Transl Med

January 2025

Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.

Background: The colon and rectum are highly innervated, with neural components within the tumor microenvironment playing a significant role in colorectal cancer (CRC) progression. While perineural invasion (PNI) is associated with poor prognosis in CRC, the impact of nerve density and diameter on tumor behavior remains unclear. This study aims to evaluate the prognostic value of nerve characteristics in CRC and to verify the impact of nerves on tumor growth.

View Article and Find Full Text PDF

The optimal therapeutic intervention for pediatrics with optic pathway glioma (OPG) remained controversial in the literature. Recently, due to substantial adverse events (AEs) of chemotherapy and its impact on children's lives, the efficacy of other options has been investigated. Bevacizumab (BVZ) is an anti-vascular endothelial growth factor (VEGF) agent that alters the lesion microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!