Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 () gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent muscle contraction, impaired relaxation and myokymias.

Methods: Herein, we describe two brothers in whom biallelic variants were identified following a multidisciplinary approach.

Results: The younger brother came to our attention for clinical evaluation of moderate intellectual disability, language developmental delay, and some behavioral issues. His elder brother presented mild intellectual disability, hyperactivity, tiptoe walking, and gait ataxia. At first evaluation, motor impairment with frequent falls, pes cavus, and distal hyposthenia with reduced osteotendinous reflexes were found in both. Grip myotonic phenomenon was also noted. Blood tests revealed mildly elevated creatine kinase, and neurophysiology investigations revealed predominantly axonal polyneuropathy. Muscle MRI highlighted fibro-adipose infiltration, prevalent in the lower limbs. Gene panel testing detected a heterozygous variant (c.355C>T/p.(Arg119Trp)) on the paternal allele. A further in-depth analysis using Integrative Genomics Viewer and Optical Genome Mapping led us to identify an additional variant in represented by a complex rearrangement located in the region 5'UTR-exon 1-intron 1, not previously described.

Conclusions: This complex rearrangement could have been overlooked if the clinical picture had not been evaluated as a whole (from a clinical, neurophysiological, and neuroimaging point of view). Neuropsychiatric manifestations (intellectual disability, hyperactivity, etc.) are part of the picture of -related neuromyotonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593638PMC
http://dx.doi.org/10.3390/genes15111483DOI Listing

Publication Analysis

Top Keywords

complex rearrangement
12
intellectual disability
12
disability hyperactivity
8
small complex
4
rearrangement -related
4
-related axonal
4
axonal neuropathy
4
neuropathy background
4
background autosomal
4
autosomal recessive
4

Similar Publications

WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present).

Expert Opin Ther Pat

December 2024

Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

Introduction: WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5.

View Article and Find Full Text PDF

The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis.

View Article and Find Full Text PDF

Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

View Article and Find Full Text PDF

Long-read sequencing can often overcome the deficiencies in routine microarray or short-read technologies in detecting complex genomic rearrangements. Here we used Pacific Biosciences circular consensus sequencing to resolve complex rearrangements in two patients with rare genetic anomalies. Copy number variants (CNVs) identified by clinical microarray -chr8p deletion and chr8q duplication in patient 1, and interstitial deletions of chr18q in patient 2-were suggestive of underlying rearrangements.

View Article and Find Full Text PDF

Biomimetic Synthesis of Azorellolide via Cyclopropylcarbinyl Cation Chemistry.

J Am Chem Soc

December 2024

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

A concise synthesis of the complex diterpene azorellolide, inspired by speculations on biosynthetic cationic cascades, is presented. The approach, guided by computation, relies on the intramolecular interception of a cyclopropylcarbinyl cation by an appended carboxylate. The successful execution of this strategy was achieved through acid-catalyzed isomerization of a β-lactone in competition with a type I dyotropic rearrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!