Molecular Determinants for Guanine Binding in GTP-Binding Proteins: A Data Mining and Quantum Chemical Study.

Int J Mol Sci

Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.

Published: November 2024

GTP-binding proteins are essential molecular switches that regulate a wide range of cellular processes. Their function relies on the specific recognition and binding of guanine within their binding pockets. This study aims to elucidate the molecular determinants underlying this recognition. A large-scale data mining of the Protein Data Bank yielded 298 GTP-binding protein complexes, which provided a structural foundation for a systematic analysis of the intermolecular interactions that are responsible for the molecular recognition of guanine in proteins. It was found that multiple modes of non-bonded interactions including hydrogen bonding, cation-π interactions, and π-π stacking interactions are employed by GTP-binding proteins for binding. Subsequently, the strengths of non-bonded interaction energies between guanine and its surrounding protein residues were quantified by means of the double-hybrid DFT method B2PLYP-D3/cc-pVDZ. Hydrogen bonds, particularly those involving the N2 and O6 atoms of guanine, confer specificity to guanine recognition. Cation-π interactions between the guanine ring and basic residues (Lys and Arg) provide significant electrostatic stabilization. π-π stacking interactions with aromatic residues (Phe, Tyr, and Trp) further contribute to the overall binding affinity. This synergistic interplay of multiple interaction modes enables GTP-binding proteins to achieve high specificity and stability in guanine recognition, ultimately underpinning their crucial roles in cellular signaling and regulation. Notably, the NKXD motif, while historically considered crucial for guanine binding in GTP-binding proteins, is not universally required. Our study revealed significant variability in hydrogen bonding patterns, with many proteins lacking the NKXD motif but still effectively binding guanine through alternative arrangements of interacting residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594714PMC
http://dx.doi.org/10.3390/ijms252212449DOI Listing

Publication Analysis

Top Keywords

gtp-binding proteins
20
guanine binding
12
guanine
10
molecular determinants
8
binding gtp-binding
8
data mining
8
binding guanine
8
hydrogen bonding
8
cation-π interactions
8
π-π stacking
8

Similar Publications

Background: There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.

View Article and Find Full Text PDF

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!