In continuously progressive tumor tissues, the causes of cellular stress are multiple: metabolic alterations, nutrient deprivation, chronic inflammation and hypoxia. To survive, tumor cells activate the stress response program, a highly conserved molecular reprogramming proposed to cope with challenges in a hostile environment. Not only cancer cells are affected, but stress responses in tumors also have a profound impact on their normal cellular counterparts: fibroblasts, endothelial cells and infiltrating immune cells. In recent years, there has been a growing interest in the interaction between cancer and immune cells, especially in difficult conditions of cellular stress. A growing literature indicates that knowledge of the molecular pathways activated in tumor and immune cells under stress conditions may offer new insights for possible therapeutic interventions. Counter-regulating the stress caused by the presence of a growing tumor can therefore be a weapon to limit disease progression. Here, we review the main pathways activated in cellular stress responses with a focus on immune cells present in the tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594858PMC
http://dx.doi.org/10.3390/ijms252212403DOI Listing

Publication Analysis

Top Keywords

immune cells
16
cellular stress
12
stress
8
cells stress
8
stress responses
8
pathways activated
8
cells
7
tumor
6
immune
5
extrinsic cell-intrinsic
4

Similar Publications

Immune checkpoint inhibitors have improved the treatment of metastatic renal cell carcinoma (RCC), with the combination of nivolumab (NIVO) and ipilimumab (IPI) showing promising results. However, not all patients benefit from these therapies, emphasizing the need for reliable, easily assessable biomarkers. This multicenter study involved 116 advanced RCC patients treated with NIVO + IPI across nine oncology centers in Poland.

View Article and Find Full Text PDF

Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.

Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.

View Article and Find Full Text PDF

The association of gut microbiota, immunocyte dynamics, and protein-protein ratios with tuberculosis susceptibility: a Mendelian randomization analysis.

Sci Rep

January 2025

Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.

This study focused on the relationships among gut microbiota, plasma protein ratios, and tuberculosis. Given the unclear causal relationship between gut microbiota and tuberculosis and the scarcity of research on relevant plasma protein ratios in tuberculosis, Mendelian randomization analysis (MR) was employed for in-depth exploration. By analyzing the GWAS data of individuals with European ancestry (the FinnGen dataset included 409,568 controls and 2613 cases), using the two-sample MR method, we focused on evaluating the impact of immunocyte-mediated gut microbiota on tuberculosis and the associations between 2821 plasma protein-to-protein ratios and tuberculosis.

View Article and Find Full Text PDF

Role of macrophage in intervertebral disc degeneration.

Bone Res

January 2025

Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.

Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized.

View Article and Find Full Text PDF

VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8T cells function in the HCC microenvironment.

Signal Transduct Target Ther

January 2025

Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!